INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD04 23-26 May 2004 1 Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.

Slides:



Advertisements
Similar presentations
CALICE Summary of 2006 testbeam for the ECAL
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
TEA Systems Corp. Confidential LithoWorks PEB On-Wafer analysis of two wafers August 8, 2003 Thermal analysis of two PEB plates: _peb_bake7.csv _peb_bake8.csv.
Advanced Piloting Cruise Plot.
1 A first design of the PEP-N Calorimeter A first design of the PEP-N Calorimeter Presented by P. Patteri Laboratori Nazionali di Frascati INFN for PEP-N.
X5/GIF Test Beam: High Rate Analysis Manuela Cirilli.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Chapter 1 Image Slides Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 New target transverse spin dependent azimuthal asymmetries from COMPASS experiment Bakur Parsamyan INFN & University of Turin on behalf of the COMPASS.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
1 1  1 =.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Multi Beamlett Extraction Experiments and Sector Magnet Field Investigation.
US CMS Collaboration Meeting, May 19, Ren-yuan Zhu, Caltech PWO Crystal ECAL Ren-yuan Zhu California Institute of Technology May 19 th 2001.
Vacuum Phototriodes for the CMS Electromagnetic Calorimeter Endcap
CMS ECAL Annual Review - CERN Sept 2001 R M Brown - RAL 1 Test results from 500 preproduction VPTs R M Brown RAL - UK CERN 19 September 2001.
Geant 4 simulation of the DEPFET beam test Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček Faculty of Mathematics and Physics Charles University,
Break Time Remaining 10:00.
Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris.
Prototype sPHENIX Calorimeters
ABC Technology Project
15. Oktober Oktober Oktober 2012.
1..
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Introduction to Feedback Systems / Önder YÜKSEL Bode plots 1 Frequency response:
Chapter 5 Test Review Sections 5-1 through 5-4.
HyCal reconstruction: current situation current situation and future tasks. V. Mochalov, IHEP (Protvino)
Benjamin Banneker Charter Academy of Technology Making AYP Benjamin Banneker Charter Academy of Technology Making AYP.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Subtraction: Adding UP
Equal or Not. Equal or Not
Slippery Slope
Week 1.
We will resume in: 25 Minutes.
Clock will move after 1 minute
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
CSC Test Beam Data Analysis Alexander Khodinov and Valeri Tcherniatine.
Large Area Timing Detectors
ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.
ECAL Testbeam Meeting, Rome 28 March 2007 Toyoko Orimoto Adolf Bornheim, Chris Rogan, Yong Yang California Institute of Technology Lastest Results from.
ECAL TIMING. 20/04/092 Ratios’ Method Basics Position of pulse maximum parameterized using the ratio of two consecutive samples, i.e., R = A(t)/A(t+1)
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
N. Anfimov (JINR) on behalf of the ECAL0 team.  Introduction  Installation and commissioning  Calibration  Data taking  Preliminary result  Plans.
Intercalibration of the CMS Electromagnetic Calorimeter Using Neutral Pion Decays 1 M. Gataullin (California Institute of Technology) on behalf of the.
The CMS Electromagnetic Calorimeter Roger Rusack The University of Minnesota On behalf of the CMS ECAL collaboration.
Calibration of the CMS Electromagnetic Calorimeter with first LHC data
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
1 P.Rebecchi (CERN) “Monitoring of radiation damage of PbWO 4 crystals under strong Cs 137  irradiation in GIF-ECAL” “Advanced Technology and Particle.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Georgios Daskalakis On behalf of the CMS Collaboration ECAL group CALOR 2006 – Chicago,USA June 5-9, 2006 CMS ECAL Calibration Strategy.
The CMS electromagnetic calorimeter
LHCf Detectors Sampling Calorimeter W 44 r.l, 1.6λ I Scintilator x 16 Layers Position Detector Scifi x 4 (Arm#1) Scilicon Tracker x 4(Arm#2) Detector size.
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
Sergey BarsukElectromagnetic Calorimeter for 1 Electromagnetic Calorimeter for the LHCb experiment Perugia, Italy March 29 – April 2, 2004 ECAL CALO Sergey.
M.D. Nov 27th 2002M0' workshop1 M0’ linearity study  Contents : Electronic injection Laser injection Beam injection Conclusion.
28/11/02Guy Dewhirst1 Ultra Light Weights Method Guy Dewhirst Imperial College London.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
2004 LHC DAYS IN SPLIT- October 8 th 2004 L. Dobrzynski - LLR CMS - ECAL Test beam results Ludwik Dobrzynski On behalf of ECAL CMS LLR- Ecole polytechnique.
Resolution Studies of the CMS ECAL in the 2003 Test Beam
CMS ECAL Calibration and Test Beam Results
CMS ECAL Cosmic Calibration
Presentation transcript:

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi on behalf of CMS ECAL Collaboration

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Outline Energy reconstruction technique and performances Impact point reconstruction Intercalibration Irradiation monitoring performances Cooling system

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Experimental setup SupermoduleMovable Table Beam Hodoscopes Laser monitoring system and HV system (for APDS) : final scheme LV system : prototype cooling system: final prototype moving table plastic scintillator for trigger Hodoscopes ( ~145 m) Laser monitoring system

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Test beams data 2002 : 100 channels with old electronic (FPPA) detailed study of: Laser monitoring intercalibration cooling system 2003: 2 test periods Electron energies (GeV) 20, 35, 50, 80, 120, 150, 180, , 50, 70, 100 SM (# equip. crys.) FPPA (100 chan.) MGPA (50 chan.) SM0 SM1 # gains 4 3 period long 1.5 months short 10 days

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Energy reconstruction 3 pedestal samples and 11 signal samples 40 MHz Amplitude T max T pea k Time (*25 ns) SM0/FPPA Under the constraints W i determined minimizing

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Energy resolution Electrons incident on a 4x4 mm 2 central region Pedestal run Amplitude (MeV) : 129 MeV Sum over 3x3 matrix Noise term determined from pedestal runs E /E (%) E beam (GeV)

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Position reconstruction Deposited energy Impact point reconstructed by hodoscopes ( ~ 150 m) Measure impact position from calorimetric information X i : position of the i-th crystal Two methods :

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Position reconstruction Y (reco.–true) mm S curve is E, dependent Resolution varies with impact position (better resolution close to crystal edges) = 700 m Y (reco.–true) mm Logarithmic weights G. Daskalakis I. Van Vulpen 1mm

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Intercalibration Procedure selections: e - impacting within a 7 x 7 mm 2 central region ( retains ~25% of events ) Cancel out the dependence of reconstructed energy on impact position by equalizing to the maximum response: IV order polynomial fit M Relative calibration: Channel response: position of peak M, fitted by a Gaussian + exp left tail

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Intercalibration Comparison of intercalibration from different data set Same accuracy as 2002 results Statistical accuracy: compare the intercalibration obtained using only a reduced sample of data w.r.t. to the one with the whole statistic An accuracy of ~ 0.1% can be achieved with 1000 triggered events RMS :~0.3% intercalib. ~1000 triggered events RMS:~0.09% intercalib.

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Intercalibration from laboratory measurements Only few modules will be calibrated on a beam Precalibration starting from Light Yield measurements in laboratory : 60 Co source 1.2 MeV Containment: 120 GeV APD Gain Electronic gain M = 4.05% F. Cavallari

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Irradiation Monitoring Laser signal Electron signal = 1.55 ~5% Irradiation affects only the light transmission Monitoring and correct for the loss in response by the injection of laser light as reference A. Van Lysebetten P. Verrecchia

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Irradiation Monitoring / = 6.3% / = 6.3% 2002 and 2003 data: it is possible to use the same for all the crystal After the correction for loss in transparency 2002 A. Van Lysebetten P. Verrecchia Time (hours) signal amplitude (ADC counts) PRELIMINARY

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Thermal step The APD gain (M) depends on the temperature : Also the LY depends on the temperature Average thermistor temperature T = % / °C The two effects sum up in the overall response (R): and measured in a thermal step Laser runs Electrons runs T = % / °C 1 ºC

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Cooling system 1 C 0.1 C 7 days Cooling system with cooling bar ~1.5 month Cooling bars PRELIMINARY

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Summary The new Very Front End cards equipped with MGPA satisfy the target specifications. The impact point reconstruction shows a resolution better than 1mm for Energy > 35 GeV A robust intercalibration procedure on e- beam has been developed, and an initial intercalibration at ~4% level is reachable for all the crystals from laboratory measurements of the light yield The laser monitoring system and the cooling system satisfy the performances required for CMS

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Back up

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Energy reconstruction A pure signal f(t)

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Energy reconstruction (E)/E (%) SM0/FPPA E resolution VS # of pulse samples Normalised T max 25 ns Number of events Spread in Time of maximum response Resolution versus mismatch T max mismatch (ns) (E)/E (%) SM0/FPPA

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Position reconstruction =620 m Y (reco.–true) mm uncorrected S-curve Worst resolution: max. energy fraction in central crystal Best resolution: corrected S-curve Reconstructed (Y) mm close to crystal edge Resolution versus impact position Y (reco.–true) mm E = 120 GeV

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Laboratory measurements Precalibration starting from LY measurements in laboratory : 60 Co source 1.2 MeV

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Test beam 2002 LY 0.5 % LY intercalibration coeff.

INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Test beam 2002 Cooling average thermistors temperature 2 months 0.06 ºC 2002 Stability over a long period Uniformity of temperature within a module 6 days 0.04 ºC