CCAMP WG, IETF 76th, Hiroshima, Japan draft-zhang-ccamp-gmpls-g709-framework-00.txt Fatai Zhang Dan Li Jianrui.

Slides:



Advertisements
Similar presentations
CCAMP WG, IETF 80th, Prague, Czech Republic draft-gonzalezdedios-subwavelength-framework-00 Framework for GMPLS and path computation support of sub-wavelength.
Advertisements

Page - 1IETF 76, Hiroshima, November 8-13, 2009 GMPLS Signaling Extensions for Evolutive OTNs control draft-fuxh-ccamp-gmpls-extension-for-evolutive-otn-03.txt.
Page th IETF – Stockholm, Sweden, July 2009 WSON Signal Characteristics and Network Element Compatibility Constraints for GMPLS Greg
CCAMP WG, IETF 76th, Hiroshima, Japan draft-zhang-ccamp-gmpls-evolving-g txt Fatai Zhang Guoying Zhang Sergio Belotti Daniele Ceccarelli GMPLS Signaling.
IETF 78, Maastricht, Netherlands, July 25-30, 2010Page - 1 Requirement and Framework for Multi Stages Multiplexing Configuration in G.709 network draft-fuxh-ccamp-multi-stage-multiplex-config-req-01.
Slide title In CAPITALS 50 pt Slide subtitle 32 pt GMPLS RSVP-TE Extensions for OTN and SONET/SDH OAM Configuration draft-kern-ccamp-rsvp-te-sdh-otn-oam-ext-00.
Page - 175th IETF - Stockholm, Sweden, July 2009 GMPLS Signaling Extensions for Evolutive OTNs control draft-ceccarellifuxh-ccamp-gmpls-extensions-for-evolutive-otn-00.txt.
RSVP-TE Extensions for SRLG Configuration of FA
ITU-T/OIF Report IETF 76 – Hiroshima – Nov09 L. Ong (Ciena) Thanks to Malcolm Betts & Kam Lam for ITU- T slides.
Information model for G.709 Optical Transport Network (OTN) draft-bccg-ccamp-otn-g709-info-model-04 CCAMP WG, IETF 80 th Prague.
LMP Test Messages Extensions for Evolutive OTN draft-ceccarelli-ccamp-gmpls-g709-lmp-test-01 CCAMP WG, IETF 76 th Hiroshima.
OSPF-TE extensions for GMPLS Control of Evolving G.709 OTN draft-ceccarelli-ccamp-gmpls-ospf-g709-02/03 CCAMP WG, IETF 78 th Maastricht.
Information model for G.709 Optical Transport Network (OTN) draft-bccg-ccamp-otn-g709-info-model-03 CCAMP WG, IETF 79 th Beijing.
OSPF-TE extensions for GMPLS Control of Evolutive G.709 OTN
G : DCM Signaling Mechanism Using GMPLS RSVP-TE ITU-T Workshop on IP-Optical, Chitose, Japan 7/11/2002 Dimitrios Pendarakis, Tellium, Inc. ITU-T.
Requirement and protocol for WSON and non-WSON interoperability CCAMP WG, IETF 81th, Quebec City, Canada draft-shimazaki-ccamp-wson-interoperability-00.
OSPF-TE extensions for GMPLS Control of Evolving G.709 OTN draft-ietf-ccamp-gmpls-ospf-g709v3-00 CCAMP WG, IETF 82 nd Taipei.
The Optical Transport Network (OTN) – G.709
CCAMP - 69th IETF1 Generalized MPLS (GMPLS) Support For Metro Ethernet Forum and G.8011 User-Network Interface (UNI) draft-berger-ccamp-gmpls-mef-uni-00.txt.
GMPLS Signaling Extensions for G.709-v3 (draft-khuzema-ccamp-gmpls-signaling-g txt ) Rajan Rao ( Khuzema Pithewan.
Page th IETF – Vancouver, December 2007 PCEP Requirements and Extensions for the support of Wavelength Switched Optical Networks (WSON) Young
OTN Overview & Update Jean-Marie Vilain Product Specialist.
Page th IETF – Dublin, Ireland, July 2008 Framework for GMPLS and PCE Control of Wavelength Switched Optical Networks (WSON) Greg
OSPF-TE extensions for OTN (draft-ashok-ccamp-gmpls-ospf-g709-03) CCAMP IETF-80 (Mar-2011) Rajan Rao Ashok Kunjidhapatham.
Information model for G.709 Optical Transport Network (OTN) draft-bccg-ccamp-otn-g709-info-model-01 CCAMP WG, IETF 78 th Maastricht.
Operating VCAT and LCAS with GMPLS draft-bernstein-ccamp-gmpls-vcat-lcas-01 Greg Bernstein: Diego.
OSPF-TE extensions for GMPLS Control of Evolving G.709 OTN draft-ietf-ccamp-gmpls-ospf-g709v3-03 CCAMP WG, IETF 84 th Vancouver.
OSPF-TE extensions for GMPLS Control of Evolving G.709 OTN draft-ceccarelli-ccamp-gmpls-ospf-g CCAMP WG, IETF 79 th Beijing.
OSPF-TE extensions for GMPLS Control of Evolving G.709 OTN draft-ceccarelli-ccamp-gmpls-ospf-g CCAMP WG, IETF 81 th Quebec City.
CCAMP WG, IETF 79th, Beijing, China draft-zhang-ccamp-gmpls-evolving-g txt GMPLS Signaling Extensions for the Evolving G.709 OTN Control Fatai Zhang.
1 Framework for GMPLS based control of Flexi-grid DWDM networks draft-ogrcetal-ccamp-flexi-grid-fwk-02 CCAMP WG, IETF 86 Oscar González de Dios, Telefónica.
Page rd IETF – Minneapolis, MN, November 2008 A Framework for the Control and Measurement of Wavelength Switched Optical Networks (WSON) with Impairments.
CCAMP WG, IETF 81th, Quebec City, Canada draft-zhang-ccamp-gmpls-evolving-g txt Authors & Contributors GMPLS Signaling Extensions for the Evolving.
CCAMP WG, IETF 76th, Hiroshima, Japan draft-zhang-ccamp-gmpls-g709-lmp-discovery-02.txt LMP extensions for G.709 Optical Transport Networks Fatai Zhang.
Framework for G.709 Optical Transport Network (OTN) draft-ietf-ccamp-gmpls-g709-framework-05 CCAMP WG, IETF 82 nd Taipei.
CCAMP WG, IETF 80th, Prague, Czech Republic draft-ietf-ccamp-gmpls-g709-framework-04.txt Framework for GMPLS and PCE Control of G.709 Optical Transport.
1 Requirements for GMPLS-based multi-region and multi-layer networks (MRN/MLN) draft-ietf-ccamp-gmpls-mln-reqs-01.txt CCAMP WG, IETF 66 Jul. 10, 2006 Kohei.
CCAMP WG, IETF 75th, Stockholm, Sweden draft-zhang-ccamp-gmpls-evolving-g txt Fatai Zhang Guoying
1 Ping and Traceroute for GMPLS LSPs in Non-Packet Switched Networks draft-ali-ccamp-gmpls-lsp-ping-traceroute-01.txt Zafar Ali, Roberto Cassata (Cisco.
Page th IETF – Hiroshima, Japan, November 2009 WSON Signal Characteristics and Network Element Compatibility Constraints for GMPLS Greg
66th IETF, Montreal, July 2006 PCE Working Group Meeting IETF-66, July 2006, Montreal A Backward Recursive PCE-based Computation (BRPC) procedure to compute.
1 Framework for GMPLS based control of Flexi-grid DWDM networks draft-ogrcetal-ccamp-flexi-grid-fwk-02 CCAMP WG meeting, IETF 87 Oscar González de Dios,
Multi layer implications in GMPLS controlled networks draft-bcg-ccamp-gmpls-ml-implications-05 D.Papadimitriou (Alcatel-Lucent) D.Ceccarelli (Ericsson)
1 RSVP-TE Recovery Extension Extension for Additional Signal Types in G.709 OTN draft-ali-ccamp-additional-signal-type-g709v3-02.txt 89th IETF, CCAMP WG,
RSVP-TE Signaling Extension for Explicit Control of LSP Boundary in MRN/MLN draft-fuxh-ccamp-boundary-explicit-control-ext-01.txt draft-fuxh-ccamp-boundary-explicit-control-ext-01.txt.
1 RSVP-TE Recovery Extension Extension for Additional Signal Types in G.709 OTN draft-ali-ccamp-additional-signal-type-g709v3-03.txt 90th IETF, CCAMP WG,
LMP Test Messages Extensions for Evolutive OTN draft-ceccarelli-ccamp-gmpls-g709-lmp-test-01 CCAMP WG, IETF 77 th Anaheim.
Technology agnostic OSPF-TE extensions for GMPLS draft-bccgd-ccamp-gmpls-opsf-agnostic-00 CCAMP WG, IETF 79 th Beijing.
CCAMP WG, IETF 79th, Beijing, China draft-ietf-ccamp-gmpls-g709-framework-03.txt Framework for GMPLS and PCE Control of G.709 Optical Transport Networks.
GMPLS extensions to communicate latency as a Traffic Engineering performance metric draft-wang-ccamp-latency-te-metric-00.txt draft-wang-ccamp-latency-te-metric-00.txt.
PCEP extensions for GMPLS CCAMP WG, IETF 79th, Beijing, China draft-ietf-pce-gmpls-pcep-extensions-01 Cyril Margaria Nokia Siemens Networks Oscar González.
ASON routing implementation and testing ASON routing extensions IETF 76 – Hiroshima – Nov‘09 L. Ong (Ciena)
GMPLS Signaling Extensions for G
Framework for GMPLS based control of Flexi-grid DWDM networks draft-ogrcetal-ccamp-flexi-grid-fwk-01 CCAMP WG, IETF 85 Oscar González de Dios, Telefónica.
FlexE - Channel Control Work in the IETF
ASON routing implementation and testing ASON routing extensions
RSVP-TE Signaling Extension for Explicit Control of LSP Boundary in MRN/MLN draft-fuxh-ccamp-boundary-explicit-control-ext-02.txt Xihua Fu Qilei Wang.
73rd IETF – Minneapolis, MN, November 2008
GMPLS Signaling Extensions for the Evolving G.709 OTN Control
GMPLS Signaling Extensions for the Evolving G.709 OTN Control
GMPLS OSPF-TE Extensions in support of Flexible-Grid in DWDM Networks
Guard Bands requirements for GMPLS controlled optical networks
OSPF Extensions for ASON Routing draft-ietf-ccamp-gmpls-ason-routing-ospf-03.txt IETF67 - Prague - Mar’07 Dimitri.
Qilei Wang & Yuanbin Zhang Huub van Helvoort (New co-author)
Iftekhar Hussain (Presenter),
draft-merge-ccamp-otn-b100g-fwk-01
draft-barth-pce-association-bidir-01
The University of Adelaide, School of Computer Science
FlexE Design Team Presenter: Mach
YANG data model for Flexi-Grid Optical Networks
Presentation transcript:

CCAMP WG, IETF 76th, Hiroshima, Japan draft-zhang-ccamp-gmpls-g709-framework-00.txt Fatai Zhang Dan Li Jianrui Han Han Li Framework for GMPLS and PCE Control of G.709 Optical Transport Networks

Background: Overview of G.709 (1)  OTN Layer Network Analogue Layer: OCh, OMS, OTS Digital layer: OTUk, ODUk, OPUk  Mapping/Multiplexing TDM: Client signal → LO OPU → LO ODU → (HO OPU → HO ODU → ) OTU ‐ ODU0 into ODU1 multiplexing (with 1.25Gbps TS granularity) ‐ ODU0, ODU1, ODUflex into ODU2 multiplexing (with 1.25Gbps TS granularity) ‐ ODU1 into ODU2 multiplexing (with 2.5Gbps TS granularity) ‐ ODU0, ODU1, ODU2, ODU2e and ODUflex into ODU3 multiplexing (with 1.25Gbps TS granularity) ‐ ODU1, ODU2 into ODU3 multiplexing (with 2.5Gbps TS granularity) ‐ ODU0, ODU1, ODU2, ODU2e, ODU3 and ODUflex into ODU4 multiplexing (with 1.25Gbps TS granularity) WDM:OCh[r] → OCC[r] → OCG ‑ n[r] → OTM ‑ n[r].m → OTM ‑ n.m Note that we would only focus on the control of the normative things for G.709, other things like ODU3e1 and ODU3e2 in G.sup43 will be moved to an appendix.

Tributary Slot allocation: important for Control Plane –ODU0 into ODU1, ODU2, ODU3 or ODU4 multiplexing (TS =1.25Gbps) ODU0 occupies 1 of the 2, 8, 32or 80 TS for ODU1, ODU2, ODU3 or ODU4 –ODU1 into ODU2, ODU3 or ODU4 multiplexing (TS =1.25Gbps) ODU1 occupies 2 of the 8, 32 or 80 TS for ODU2, ODU3 or ODU4 –ODU1 into ODU2, ODU3 multiplexing (TS =2.5Gbps) ODU1 occupies 1 of the 4 or 16 TS for ODU2 or ODU3 –ODU2 into ODU3 or ODU4 multiplexing (TS =1.25Gbps) ODU2 occupies 8 of the 32 or 80 TS for ODU3 or ODU4 –ODU2 into ODU3 multiplexing (TS =2.5Gbps) ODU2 occupies 4 of the 16 TS for ODU3 –ODU3 into ODU4 multiplexing (TS =1.25Gbps) ODU3 occupies 31 of the 80 TS for ODU4 –ODUflex into ODU2, ODU3 or ODU4 multiplexing (TS =1.25Gbps) ODUflex occupies n of the 8, 32 or 80 TS for ODU2, ODU3 or ODU4 (n <= Total TS numbers of ODUk) –ODU2e into ODU3 or ODU4 multiplexing (TS =1.25Gbps) ODU2e occupies 9 of the 32 TS for ODU3 or 8 of the 32 TS for ODU4 Background: Overview of G.709 (2)

Connection Management in OTN (Typical Cases)  LO ODU connection can be created based on the link resource provided by OTUk/OCh  The LO ODU can be switched at the intermediate ODXC node  LO ODU is mapped into OTU directly LO ODUj ODXC PXC ODXC OCh/OTUk PXC Node ANode BNode C LO ODUj ODXC PXC ODXC OCh/OTUk/HO ODUk PXC Node ANode BNode C Case 1:Connection of LO ODUk (1) Case 2:Connection of LO ODUk (1)  LO ODU connection can be created based on the link resource provided by HO ODU  The LO ODU can be switched at the intermediate ODXC node  LO ODU is multiplexed into HO ODU

Connection Management in OTN (Topology Representation)  Different LO ODUk (e.g., ODUflex, ODU0, ODU1, ODU2, ODU3, etc.) may share the same server Higher ODUk.  From the viewpoint of layer connection, a simpler representation is to describe the LO ODU as a single layer network, in which the bit rate of a client is a parameter. This representation shows a single topology containing ODU links and subnetworks (i.e. resources) that is shared by all client ODU signals. ODXC PXC ODXCPXC Node ANode BNode C PXC ODXC Node D OCh/OTU3/HO ODU3 OCh/OTU1 OCh/OTU2 LO ODU2 LO ODU1

Connection Management in OTN (Example) The above topology containing links and matrices:  Link #1: HO ODU2/OTU2, support transport of either LO ODU0 and LO ODU1 via HO ODU2/OTU2, or LO ODU2 via OTU2;  Link #2: HO ODU3/OTU3, support transport of either LO ODU0, LO ODU1, LO ODU2 via HO ODU3/OTU3, or LO ODU3 via OTU3;  Link #3: HO ODU2/OTU2, support transport of either LO ODU0, LO ODU1 via HO ODU2/OTU2, or LO ODU2 via OTU2;  Link #4: HO ODU1/OTU1, support transport of either LO ODU0 via HO ODU1/OTU1, or LO ODU1 via OTU1;  Link #5: HO ODU1/OTU1, support transport of either LO ODU0 via HO ODU1/OTU1, or LO ODU1 via OTU1;  LO ODU Matrix A, LO ODU Matrix B, LO ODU Matrix C, LO ODU Matrix D, LO ODU Matrix E Therefore, there are two possible pathes (in red) for the LO ODU0 connection request (from Node A to Node D) ODXC Node A ODXC Node B ODXC Node C ODXC Node D ODXC Node E Link #1 Link #2 Link #3 Link #5Link #4 LO ODU0 Connection

Implications for LSP Hierarchy with GMPLS TE  The path computation for LO ODU connection request is based on the topology of ODU layer, including OCh layer visibility.  Connection request in OTN can be divided into two layers. One layer is OCh/OTUk/HO ODUk, the other is LO ODU. [RFC4206] defines the mechanisms to accomplish creating the hierarchy of LSPs. The LSP management of multiple layers in OTN can follow the procedures defined in [RFC4206] and related MLN drafts.  The route path computation for WSON is in the scope of [WSON-Frame].  This document only considers ODU layer for LO ODU connection request.

Implications for GMPLS Signaling Some new features for the evolutive OTN has been introduced since [RFC4328] released. [RFC4328] can not support these new features:  New traffic parameters may need to be extended in signaling message to support: ( 1)New signal types of digital wrapper layer Optical Channel Transport Unit (OTUk): OTU4 Optical Channel Data Unit (ODUk): ODU0, ODU2e, ODU4, ODUflex (2)ODUflex traffic parameter: How many tributary slots need for an ODUflex connection along each link depends on Bit Rate and Bit Rate Tolerance (BR, BRT) Therefore, (BR, BRT) information of an ODUflex conn should be included in the signaling End-to-End  New label should be defined to carry the exact label allocation information to support: (1)A new Tributary Slot (TS) granularity (i.e., 1.25 Gbps) (2)New multiplexing hierarchy (e.g., ODU0 into ODU1 multiplexing, ODUj into ODU4 (with 1,25Gbps TS granularity).)

Implications for GMPLS Routing  One ODU link may support one or more types of ODU signals multiplexing. --->The routing protocol should be extended to carry this multiplexing capability.  One type of ODUj can be multiplexed to one ODUk by different tributary slots. ---> The routing protocol should be extended to carry which TS granularity supported by the ODU interface  Total bandwidth of the TE link, Unreserved Bandwidth of the TE link, Maximum LSP Bandwidth are dependent on total number of the Tributary Slots, the unallocated Tributary Slots and the maximum Tributary Slots in OTN ---> The routing protocol should be extended to carry this link bandwidth information in OTN networks

Implications for Auto-discovery  The two ends of an ODU link may support different TS structure. --->Correlate the Granularity of the TS (two ends of the one link should correlate TS type)  The switching capability of two ends of the link may be different, so the link capability of two ends should be correlate. --->Correlate the Supported LO ODU Signal Types (which types of LO ODU can be supported by the HO ODU link)

Implications for PCE  PCECP also has a desire to be extended to carry the new signal type and related variable bandwidth information when a PCC requests a path computation.

Next Steps Move the content of G.sup43 in an appendix Put reference to G.709 Continue discussion with ITU-T Liaison to ITU-T SG15 when/if this work is adopted by CCAMP Refine it according to the feedback from the meeting or mailing list