Heat Treatment.

Slides:



Advertisements
Similar presentations
Heat Treatments of Ferrous Alloys
Advertisements

Ferrous Metallurgy: The Chemistry and Structure of Iron and Steel
Changing the Properties of Steels
Heat Treatment of Steel
HEAT TREATMENT OF STEEL
IT 208Chapter 121 Change of Condition Chapter 12.
INDUSTRIAL MATERIALS Instructed by: Dr. Sajid Zaidi
Heat treatment 1. Introduction
Heat Treatment of metals
Heat Treatment ISAT 430. Module 6 Spring 2001Dr. Ken Lewis ISAT Heat Treatment Three reasons for heat treatment To soften before shaping To relieve.
Annealing  Annealing is done to improve ductility (the ability to be drawn and extruded) and reduce brittleness.  Annealing consists of softening the.
Module 5. Metallic Materials
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
Annealing Makes a metal as soft as possible
Welding Metallurgy 2.
CARBON STEEL Microstructure & Mechanical properties
Heat Treatment of Metals
Introduction The properties and behavior of metals (and alloys) depend on their: Structure Processing history and Composition Engr 241.
Heat Treatment of Metals
MATERIAL SCIENCE. Introduction  “A combination of heating and cooling operation, timed and applied to a metal or alloy in the solid state in a way that.
Bachelor of Technology Mechanical
Thermal Processing of Metal Alloys
Annealing Processes All the structural changes obtained by hardening and tempering may be eliminated by annealing. to relieve stresses to increase softness,
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Metal Alloys: Their Structure & Strengthening by Heat Treatment
Heat Treatment of Steel
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
Anandh Subramaniam & Kantesh Balani
- heating on at required temperature - dwell at temperature - cooling
Properties of Metals The Basics. Brittleness A property of a metal that does not allow movement of material or distortion before it will break.
Annealing, Normalizing, and Quenching of Metals
Forging new generations of engineers
Metallurgy of steel When carbon in small quantities is added to iron, ‘Steel’ is obtained. The influence of carbon on mechanical properties of iron is.
Prepared by:- VISHAL RATHOD SNEH RATHOD RUTUL SHAH RAJ MEHTA PARTH VORA Heat Treatment.
Surface hardening.
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
HEAT TREATMENT OF STEEL
Heat Treating Processes
Anandh Subramaniam & Kantesh Balani
BABARIA INSTITUTE OF TECHNOLOGY
Annealing , normalizing , quenching , martensitic transformation .
C.K.PITHAWALA COLLEGE OF ENGG. & TECHNOLGY Presented By :- Group No :- 6 1 DereViral M Rajwadwala Faizal Mavdiya Yash
Non-Equilibrium Heat Treatment. Steel Crystal Structures: Ferrite – BCC iron w/ carbon in solid solution (soft, ductile, magnetic) Austenite – FCC iron.
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
HEAT TREATMENT -I.
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Heat Treatment of Steel
Thermal Processing of Metal Alloys
Smt. S. R. Patel engineering college ,Dabhi.
HEAT TREATMENT PROCESS
Heat Treatment Processes In Gear Design
By: Engr. Hassaan Bin Younis
 Bulk and Surface Treatments  Annealing, Normalizing, Hardening, Tempering  Hardenability HEAT TREATMENT.
HEAT TREATMENT OF METALS
Which of the following is a single phase that can occur in steels:
Microstructure of Steel
Chapter 10 – Heat Treatment of Steels
ME ENGINEERING MATERIALS AND METALLURGY
Heat Treatment of Metals
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
HEAT TREATMENT OF METALS
Fundamental Concepts of Metals Science
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Heat Treatment of Steels
Heat Treatment By: Md Aaqib Rahman Assistant Professor
Heat Treatment of Metals
Steel production Engineering alloys Engineering Materials
Heat Treatment of Steels
Presentation transcript:

Heat Treatment

The amount of carbon present in plain carbon steel has a pronounced effect on the properties of a steel and on the selection of suitable heat treatments to attain certain desired properties. Heat treatment is a method used to alter the physical, and sometimes chemical properties of a material. The most common application is metallurgical It involves the use of heating or chilling, normally to extreme temperatures, to achieve a desired result such as hardening or softening of a material It applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally

Annealing Normalizing Hardening Carburizing Tempering Types Annealing Normalizing Hardening Carburizing Tempering

Annealing Steel is annealed to reduce the hardness, improve machine ability, facilitate cold-working, produce a desired microstructure. Full annealing is the process of softening steel by a heating and cooling cycle, so that it may be bent or cut easily. In annealing, steel is heated above the transformation temperature to form austenite, and cooled very slowly, usually in the furnace.

Types of Annealing Stress-Relief Annealing (or Stress-relieving) Normalizing Isothermal Annealing Spheroidizing Annealing (or Spheroidizing )

1. Stress-Relief Annealing It is an annealing process below the transformation temperature Ac1, with subsequent slow cooling, the aim of which is to reduce the internal residual stresses in a workpiece without intentionally changing its structure and mechanical properties Critical Temperature of Steel is 724°C

Causes of Residual Stresses 1. Thermal factors (e.g., thermal stresses caused by temperature gradients within the workpiece during heating or cooling) 2. Mechanical factors (e.g., cold-working) 3. Metallurgical factors (e.g., transformation of the microstructure)

Stress-Relief Annealing Process For plain carbon and low-alloy steels the temperature to which the specimen is heated is usually between 450 and 650˚C, whereas for hot-working tool steels and high-speed steels it is between 600 and 750˚C This treatment will not cause any phase changes, but recrystallization may take place. Machining allowance sufficient to compensate for any warping resulting from stress relieving should be provided

Normalizing In normalizing steel is also heated above austenitizing temperature, but cooling is accomplished by still air cooling in a furnace. Steel is normalized to refine grain size, make its structure more uniform, or to improve machinability. When steel is heated to a high temperature, the carbon can readily diffuse throughout, and the result is a reasonably uniform composition from one area to the next. The steel is then more homogeneous and will respond to the heat treatment in a more uniform way.

2. Normalizing A heat treatment process consisting of austenitizing at temperatures of 30–80˚C above the AC3 transformation temperature followed by slow cooling (usually in air) The aim of which is to obtain a fine-grained, uniformly distributed, ferrite–pearlite structure Normalizing is applied mainly to unalloyed and low-alloy hypoeutectoid steels For hypereutectoid steels the austenitizing temperature is 30–80˚C above the AC1 or ACm transformation temperature Hypoeutectoid -> At L.H.S of Eutectoid point For hypereutectoid steels, normalizing is a special process

Normalizing The process might be more accurately described as a homogenizing or grain-refining treatment. Within any piece of steel, the composition is usually not uniform throughout. That is, one area may have more carbon than the area adjacent to it. These corn­positional differences affect the way in which the steel will respond to heat treatment. Because of characteristics inherent in cast steel, the normalizing treatment is more frequently applied to ingots prior to working, and to steel castings and forgings prior to hardening.

Normalizing – Heating and Cooling a, Heating; b, holding at austenitizing temperature; c, air cooling; d, air or furnace cooling

Hardening Hardening is carried out by quenching a steel, that is cooling it rapidly from a temperature above the transformation temperature. Steel is quenched in water or brine for the most rapid cooling, in oil for some alloy steels, and in air for certain higher alloy steels. With this fast cooling rate, the transformation from austenite to pearlite cannot occur and the new phase obtained by quenching is called marten site. Martensite is a supersaturated metastable phase and have body centered tetragonal lettice (bct) instead of bcc. After steel is quenched, it is usually very hard and strong but brittle. Martensite looks needle-like under microscope due to its fine lamellar structure.

Case Hardening Case Hardening is a process of hardening ferrous alloys so that the surface layer or case is made substantially harder than the interior or core.  The chemical composition of the surface layer is altered during the treatment by the addition of carbon, nitrogen, or both.  City Steel Heat Treating provides the most common processes of Carburizing, Carbonitriding, and Gas Nitriding

Carburizing Carburizing is a process used to harden low carbon steels that normally would not respond to quenching and tempering.  This is done for economical reasons (utilizing less expensive steel) or design considerations to provide a tough part with good wear characteristics.

Carburizing Carburizing introduces carbon into a solid ferrous alloy by heating the metal in contact with a carbonaceous material to a temperature above the transformation range and holding at that temperature.

Tempering Tempering (formerly called drawing), consists of reheating a quenched steel to a suitable temperature below the transformation temperature for an appropriate time and cooling back to room temperature. Freshly quenched marten site is hard but not ductile. Tempering is needed to impart ductility to marten site usually at a small sacrifice in strength.

Tempering The effect of tempering may be illustrated as follows. If the head of a hammer were quenched to a fully marten­sitic structure, it probably would crack after the first few blows. Tempering during manufacture of the hammer im­parts shock resistance with only a slight decrease in hard­ness. Tempering is accomplished by heating a quenched part to some point below the transformation temperature, and holding it at this temperature for an hour or more, depending on its size.

Tempering The micro structural changes accompanying tempering include loss of acicular marten site pattern and the precipitation of tiny carbide particles. This micro structural is referred to as tempered marten site.