STELLAR EVOLUTION HR Diagram

Slides:



Advertisements
Similar presentations
Stellar Evolution (of sun-like stars)
Advertisements

Notes 30.2 Stellar Evolution
Stellar Evolution. The Mass-Luminosity Relation Our goals for learning: How does a star’s mass affect nuclear fusion?
Announcements Homework 10 due Monday: Make your own H-R diagram!
Stellar Evolution Astrophysics Lesson 12. Learning Objectives To know:-  How stars form from clouds of dust and gas.  How main sequence stars evolve.
George Observatory The Colorful Night Sky.
Stellar Evolution Describe how a protostar becomes a star.
Warm Up 6/6/08 If star A is farther from Earth than star B, but both stars have the same absolute magnitude, what is true about their apparent magnitude?
Life Cycles of Stars.
Objectives Determine the effect of mass on a star’s evolution.
Stellar Evolution. Basic Structure of Stars Mass and composition of stars determine nearly all of the other properties of stars Mass and composition of.
8B Stellar Evolution Where do gold earrings come from?
Stellar Evolution Astronomy 315 Professor Lee Carkner Lecture 13.
Stellar Evolution Astronomy 315 Professor Lee Carkner Lecture 13.
Stellar Evolution. The H-R Diagram There are patterns in the HR diagram. Most stars lie on the main sequence, and obey a mass-luminosity relation. (Low.
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Key Ideas Classifying Stars Star Formation The Main-Sequence Stage Leaving.
Life Cycle of Stars. Stars are born in Nebulae Vast clouds of gas and dust Composed mostly of hydrogen and helium Some cosmic event triggers the collapse.
Pg. 12.  Mass governs a star’s properties  Energy is generated by nuclear fusion  Stars that aren’t on main sequence of H-R either have fusion from.
C HAPTER 25 Beyond Our Solar System. P ROPERTIES OF STARS We know about stars by studying the electromagnetic energy that they give off (all objects emit.
Birth and Life of a Star What is a star? A star is a really hot ball of gas, with hydrogen fusing into helium at its core. Stars spend the majority of.
JP ©1 2 3 Stars are born, grow up, mature, and die. A star’s mass determines its lifepath. Let M S = mass of the Sun = ONE SOLAR MASS Stellar Evolution.
Life Cycle of the Stars By Aiyana and Meredith
The Life Cycles of Stars RVCC Planetarium - Last updated 7/23/03.
Stellar Evolution Beyond the Main Sequence. On the Main Sequence Hydrostatic Equilibrium Hydrogen to Helium in Core All sizes of stars do this After this,
Stellar Evolution: After the main Sequence Beyond hydrogen: The making of the elements.
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Chapter 17 Star Stuff.
THE BIG BANG This model suggests that somewhere around 13.7 billion years ago all matter in the Universe was contained in a hot, dense particle. The temperature.
Quiz #6 Most stars form in the spiral arms of galaxies Stars form in clusters, with all types of stars forming. O,B,A,F,G,K,M Spiral arms barely move,
The Lives and Deaths of Stars
Our Place in the Cosmos Lecture 12 Stellar Evolution.
Stars. A Star is an object that produces energy at its core! A mass of plasma held together by its own gravity; Energy is released as electromagnetic.
Life Cycle of Stars Birth Place of Stars:
Chapter 30 Section 2 Handout
Studying the Lives of Stars  Stars don’t last forever  Each star is born, goes through its life cycle, and eventually die.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
‘The life-cycle of stars’
Astrophysics I: The Stellar Lifecycle Kathy Cooksey.
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe 30.2 Stellar Evolution.
12 Stellar Evolution Where do gold earrings come from?
Annoucements Go observing! Soon! The next exam is on Friday, October 8. –That is only 9 days from today.
Bell Ringer 10/13 Why do we celebrate Columbus Day?
Homework #10 Cosmic distance ladder III: Use formula and descriptions given in question text Q7: Luminosity, temperature and area of a star are related.
Unit 1: Space The Study of the Universe.  Mass governs a star’s temperature, luminosity, and diameter.  Mass Effects:  The more massive the star, the.
STARS.
STARS.
© 2011 Pearson Education, Inc. We cannot observe a single star going through its whole life cycle; even short-lived stars live too long for that. Observation.
Death of Stars. Lifecycle Lifecycle of a main sequence G star Most time is spent on the main-sequence (normal star)
Lives in the Balance Life as a Low Mass Star. Star mass categories: Low-mass stars: born with less than about 2 M Sun Intermediate-mass stars: born with.
The Evolution of Low-mass Stars. After birth, newborn stars are very large, so they are very bright. Gravity causes them to contract, and they become.
The Life Cycle of Stars.
Off the Main Sequence - The Evolution of a Sun-like Star Stages
Study of the universe (Earth as a planet and beyond)
The life cycle of a star u All stars go through four main stages u Nebulae u Protostar u Main sequence u Red giant.
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
Stellar Evolution – Life of a Star Stellar evolution is the process in which the forces of pressure (gravity) alter the star. Stellar evolution is inevitable;
Stellar Evolution (Star Life-Cycle). Basic Structure Mass governs a star’s temperature, luminosity, and diameter. In fact, astronomers have discovered.
Study of the universe (Earth as a planet and beyond)
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Objectives Classifying Stars Star Formation The Main-Sequence Stage Leaving.
The Life Cycles of Stars
Stellar Evolution.
Stellar Evolution Chapters 16, 17 & 18.
Section 3: Stellar Evolution
Stellar Evolution.
The Star Lifecycle.
Stars.
How Stars Evolve Pressure and temperature The fate of the Sun
EL: Be able to describe the evolution of stars.
Stellar Evolution Chapter 30.2.
Presentation transcript:

STELLAR EVOLUTION HR Diagram Stellar evolution is driven entirely by the never ending battle between pressure and gravity. As imbalances are reached, the star is driven to find a new energy source. Each stage in stellar evolution is marked by a different energy generation mechanism. HR Diagram at the end of this lecture, you'll not only understand this stellar evolution diagram, but will be able to make one of these yourself!

(pressure) x (volume) = (particle density) x (constant) x (temp) IDEAL GAS LAW PV = nRT (pressure) x (volume) = (particle density) x (constant) x (temp)

How PV = nRT works! Increasing the temperature increases the volume and decreases the pressure. Decreasing the volume increases the pressure (and the increases the temperature)

Why Doesn't a Star Burn all its Fuel Instantly? Stars regulate their internal pressure and temperature via the ideal gas law PV = nRT. The rate at which atoms fuse together is a function of both pressure and temperature. So, if a star gets really hot and the pressure gets really high, the star will expand and cool down, thus lowering the fusion rate. If the fusion rate increases, the temperature and pressure go up... ...the star will expand, and in the process lower its temperature and pressure, and thus its fusion rate. Eventually, Hydrostatic Equilibrium will be reached. The pressure caused by the energy generation rate will balance the inward force of gravity

What is Light? Light is a form of energy, called radiative energy. It is both a wave and a particle! It can be characterized by its wavelength and frequency: c = n speed of light in vacuum wavelength frequency

Color and Wavelength The color of the light depends on its wavelength. Longer wavelengths correspond to “redder” light; shorter wavelengths correspond to “bluer” light.

Color and Temperature peakT = 0.0029 meters Everything with a temperature emits light. Even as you sit there, you are emitting light in the infrared! The peak wavelength (or color) emitted by an object is a function of its temperature. Hotter objects emit more of their light at shorter wavelengths and are said to be “bluer”; cooler objects emit more of their light at longer wavelengths and are said to be “redder”. The relation between wavelength and temperature (in Kelvin) is given by Wein's Law, peakT = 0.0029 meters

Wein's Law peakT = 0.0029 meters Hotter objects emit more light at all wavelengths than cooler objects. Hotter objects also appear bluer than cooler objects.

Which Horseshoe Is the Hottest?

The Main Sequence A star on the main sequence is one that is generating light and heat by the conversion of hydrogen to helium by nuclear fusion in its core. hotter cooler brighter dimmer <---------------- temperature ----------------> <---------- luminosity ----------> main sequence

Stage 1: Protostar Star formation begins with a dense cloud of gas. A disturbance in the gas triggers a collapse, and the cloud begins to condense under its own gravity to form a protostar. A protostar is a forming star that has not yet reached the point where sustained fusion can occur in its core. The energy source for a protostar is gravitational contraction. The star is cool, so its color is red, but it is very large so it has a high luminosity. Sun's Age: 1-3 years old

Stage 2: Pre-Main Sequence Once the star is close to hydrostatic equilibrium, the contraction slows down. However, the star must continue to contract until the temperature in the core is high enough that nuclear fusion can begin and support the star! During the contraction the star's temperature stays about the same, but its luminosity decreases because of its shrinking size. Once nuclear reactions begin in the core, the star readjusts to account for this new energy source. In the pre-main sequence star, both gravitational contraction and nuclear fusion provide energy. Sun's Age: 10 million years old

Stage 3: Zero- Age Main Sequence Finally, the rate of fusion becomes high enough to establish gravitational equilibrium. At this point, fusion becomes self-sustaining and the star settles into its hydrogen burning, main sequence life. The main sequence phase is the longest phase of a star's life, about 10 billion years for a star with one solar mass. The main sequence is not a line, but a band in the H-R Diagram. The position of a star on the main sequence is determined by its mass and composition. Sun's Age: 27 million years old

More massive stars have shorter lifetimes!

Chihuahuas live 14-15 years. Great Danes only live 6-10 years. Hummer: 32 Gallon Gas tank 13 miles per gallon so…416 miles per tank Camry: 18.5 Gallon Gas tank 28.5 miles per gallon so…527 miles per tank

A small change in a star’s mass gives a big change in luminosity: L = M3.5 where L = luminosity in solar luminosities M = mass in solar masses So, for a star that’s twice as massive as the sun: L = 23.5 = 11.3 It’s ~11 times more luminous!! A star’s lifetime (t, in solar lifetimes) can be given by: t = = M L M 1 Amount of fuel = = M3.5 M2.5 Rate of fuel consumption So a star that’s twice as massive as the sun lives 2-2.5 = 0.17 times as long as the sun. That 0.17*1010 = 1.7 billion years

Stage 4: End of Main Sequence A star ends its life on the main sequence when it has used up all the hydrogen in its core. Once the core hydrogen has been exhausted, a shell of hydrogen surrounding the core begins to burn, providing energy to the star. During its life on the main sequence, the size and luminosity of the star has changed very little. Sun's Age: 10 billion years old

Stage 5: Post Main Sequence Now that hydrogen is exhausted in the core, there is no energy to support the Helium core. Thus, the core contracts and energy is released. The hydrogen burning shell continues to provide energy to the outer layers of the star. Sun's Age: 11 billion years

Stage 6: Red Giant – Helium Flash As the helium core contracts, the temperature and pressure increases. This increase in temperature causes the rate of hydrogen fusion in the shell surrounding the core to go up. As a result, the star expands (by as much as 200 times!). The star is now very cool, but luminous – a Red Giant! The contraction of the core causes the temperature and density to increase such that, by the time the temperature is high enough for Helium to fuse to form Carbon, the core of the star has reached a state of electron degeneracy.

Stage 7: Helium Burning Main Sequence The pressure due to electron degeneracy is significantly different from the pressure produced by the Ideal Gas Law – it is independent of temperature! In the core, the temperatures reach 200 million Kelvin and Helium can now fuse into Carbon, known as the Triple Alpha Process. This happens quite suddenly and is known as the Helium Flash. This process produces only about 20% as much energy as hydrogen burning, so the lifetime on the Helium Burning Main Sequence is only about 2 billion years. When the Helium is exhausted in the core of a star like the sun, no further reactions are possible.

Stage 8: Planetary Nebula Helium and Hydrogen burning shells will continue outside the core for a while. During Helium Shell Burning, a final thermal pulse produces a giant "hiccough" causing the star to eject as much of 10% of its mass, the entire outer envelope, known as a Planetary Nebula. The Planetary Nebula phase is relatively short lived, estimated to be about 25,000 years, and there are about 10,000 planetaries in the Milky Way.

Stage 9: White Dwarf As the nebula disperses, the shell nuclear reactions die out leaving the stellar remnant, known as a White Dwarf, supported by electron degeneracy, to fade away as it cools down. The white dwarf is small, about the size of the Earth, with a density of order 1 million g/cm3, about equivalent to crushing a Volkswagen down to a cubic centimeter or a "ton per teaspoonful." A white dwarf star will take billions of years to radiate away its store of thermal energy because of its small surface area. The white dwarf will slowly move down and to the right in the H-R Diagram as it cools until it fades from view as a "black dwarf"

Hertzsprung-Russell Diagram

Branches Red Giant Branch stars have a hydrogen burning shell and their core is contracting. Horizontal Branch stars have helium core-burning and hydrogen shell-burning. Asymptotic Giant Branch stars have a helium burning shell and their core is contracting.