Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)

Slides:



Advertisements
Similar presentations
Detector module development for the CBM Silicon Tracking System Anton Lymanets for the CBM collaboration Universität Tübingen, Kiev Institute for Nuclear.
Advertisements

ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
1 Generic Silicon Detector R&D Thomas Bergauer Institute for High Energy Physics (HEPHY) Austrian Academy of Sciences, Vienna for the SiLC Collaboration.
Alternative technologies for Low Resistance Strip Sensors (LowR) at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) M. Ullán, V. Benítez, J. Montserrat,
DPG 2001 Frank Hartmann (IEKP) P-irradiated-oxygenated Non-irradiated-oxygenated Non-irradiated-non-oxygenated P-irradiated-non-oxygenated sensors put.
1 Module and stave interconnect Rev. sept. 29/08.
Sensors for CDF RunIIb silicon upgrade LayerR min (cm)1 MeV eq-n cm * * * * * *10.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
8/22/01Marina Artuso - Pixel Sensor Meeting - Aug Sensor R&D at Syracuse University Marina Artuso Chaouki Boulahouache Brian Gantz Paul Gelling.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Status of the Low-Resistance (LowR) Strip Sensors Project CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
Minni Singla & Sudeep Chatterji Goethe University, Frankfurt Development of radiation hard silicon microstrip detectors for the CBM experiment Special.
Evaluation of the Low Resistance Strip Sensors (Low-R) Fabricated at CNM CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
Pixel 2000 Workshop Christian Grah University of Wuppertal June 2000, Genova O. Bäsken K.H.Becks.
Design and development of micro-strip stacked module prototypes for tracking at S-LHC Motivations Tracking detectors at future hadron colliders will operate.
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
Giulio Pellegrini 7th “Trento” Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies) Status productions of 3D at CNM G. Pellegrini.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
US ATLAS Upgrade Strip Meeting, Hartmut F.-W. Sadrozinski, SCIPP 1 Upgrade Silicon Strip Detectors (SSD) Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz.
16th April 2008R. Bates Glasgow University Experience with an industrial vendor in the manufacture of 3D detectors R. Bates, C. Fleta, D. Pennicard, C.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
Haga clic para modificar el estilo de texto del patrón Infrared transparent detectors Manuel Lozano G. Pellegrini, E. Cabruja, D. Bassignana, CNM (CSIC)
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
18 March 2009 Thomas Bergauer Prototype batch of DSSD from commercial vendors & Proposal for SVD Layout HEPHY Vienna.
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on.
Central European Consortium R&D of Central European Consortium (CEC) Status & Plans (Sensor Technology) Georg Steinbrück, Hamburg University Aachen DESY.
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
R. Lipton Vertex ‘98 Santorini, Greece The D0 Silicon Microstrip Tracker (D0SMT) Outline  Design  Detector Studies Coupling capacitors Radiation Damage.
Rene BellwiedSTAR Tracking Upgrade Meeting, Boston, 07/10/06 1 ALICE Silicon Pixel Detector (SPD) Rene Bellwied, Wayne State University Layout, Mechanics.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.
DEPFET Workhop, Ringberg, June Ladislav Andricek, MPG Halbleiterlabor Lessons learned from EMCMs assembly status - next steps.
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
A novel two-dimensional microstrip sensor with charge division readout M. Fernández, R. Jaramillo, F.J. Muñoz, I. Vila IFCA (CSIC-UC) D. Bassignana, M.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
B => J/     Gerd J. Kunde PHENIX Silicon Endcap  Mini-strips (50um*2mm – 50um*11mm)  Will not use ALICE chip  Instead custom design based on.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
Zheng Li, 96th LHCC open session, 19th November 2008, CERN RD39 Status Report 2008 Zheng Li and Jaakko Härkönen Full author list available at
Panja Luukka. Silicon Beam Telescope (SiBT) Group Since 2007 a collaboration of several CMS institutes has been operating a silicon micro-strip beam telescope.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
AC―coupled pitch adapters for silicon strip detectors J. Härkönen 1), E. Tuovinen 1), P. Luukka 1), T. Mäenpää 1), E. Tuovinen 1), E. Tuominen 1), Y. Gotra.
24/02/2010Richard Bates, 5th Trento workshop, Manchester1 Irradiation studies of CNM double sided 3D detectors a. Richard Bates, C. Parkes, G. Stewart.
New Mask and vendor for 3D detectors
Irradiation and annealing study of 3D p-type strip detectors
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Report from CNM activities
Design and fabrication of Endcap prototype sensors (petalet)
Pradeep Ghosh for the CBM Collaboration Goethe-Universität, Frankfurt
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
3D sensors: status and plans for the ACTIVE project
Presentation transcript:

Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun  Motivation an proposal  First proof of concept  New designs  Cint tests  New sensors batch  Preliminary results  Conclusions & future work Outline

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun  Interconnection in next generation HEP experiments  Larger sensors  Smaller electronics  More channels in both  Direct wire-bonding preferred  Production time constrains  Bonding yield and reliability is critical Motivation Direct wire-bonding in a prototype End-Cap module from DESY Berlin ATLAS case: Wafers: 6 inches to 8 inches ~ channels per sensor 250 channels per chip Total: ~120 million channels (ITk) 3 years production 15 assembly sites ~8000 wire-bonds per site per day

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun  Proposal  Second metal to implement fan-ins built in the detector  Solution to large bonding angle  without the drawbacks of external pitch adapters –Not doubling the number of wire-bonds –No additional devices (mass, assembly, costs)  Increase production speed, yield, and reliability  Possible drawbacks  “Cross-Talk”: signal being transmitted between channels from 1 st to 2 nd metal tracks  “Pick-up”: signal being captured in the 2 nd metal tracks directly from the bulk  Noise: due to increased strip capacitance  Efficiency: possible loss of CCE?  Yield: reduced sensor yield Motivation Embedded module from Berlin Embedded module from Berlin

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun First Embedded-PA  Implemented in some of the “petalet” prototype wafers  4’’ Prototype of the ATLAS ITk End-Cap modules  2 metal (Al/Cu) layers  1 micron inter-metal oxide layer  “Basic” design  Cross-talk tests  Laser tests  Signal readout in every channel  No signal seen in crossing channels M. Ullan, et al. "Embedded Pitch Adapters for the ATLAS Tracker Upgrade", NIM A, vol. 732, pp , 2013

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Observed issues

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New Embedded PA  New designs and technology tests  Modified designs  Narrower second-metal tracks  Thicker inter-metal layer  Challenges:  Keep low area fill ratio and technology yield  Reduce interstrip capacitance (Cint)  Noise  “Equalize” Cint/Noise  Reduce total coupling… –with 1st metal: Cross-talk –with bulk: Pick-up  Reduce eficiency loss

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New Embedded PA Designs I 1)Current design (“Basic”) 2)Current design but enlarge all tracks for same length (to equalize the noise) (“Equalize”)  Track length ~ 3800 μm

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New Embedded PA Designs II 3) Varying angle, similar track length (except at the two extremes) (“Varying”)  Angle ~ 3º  Equalized Track Length ~ 2400 ± 200 μm

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New Embedded PA Designs III 4) Rectangular to strips in between them (on top of p-stop) (“Rectangular-A”)  Equalized Track Length 1500 μm < L < 3000 μm 5) Rectangular to strips on top of them (“Rectangular-B”)  Equalized Track Length 1500 μm < L < 3000 μm

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New E-PA dummy sensors batch  The designs have been implemented in one of the petalet wafer designs: the TOP sensors  Glass substrate wafers  The 4 new designs have been implemented together with the current design  2 different inter-metal oxide thicknesses: 1 μm and 4 μm  2 different track widths: 20 μm and 10 μm

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Interstrip Capacitance Tests  Interstrip capacitance tests with respect to all-neighbours.  Probe card with 128 probes to test Cint in every channel with all the rest grounded  Cint test: –one probe signal input, rest probes: grounded –Sensor Biased: 100 V –100 kHz, 100 mV, parallel mode

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun C int Test Results  Basic vs. Equal C int Channel number C int =1.8±0.4 pFC int =0.8±0.3 pF

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun C int Test Results  Basic vs. Varying C int Channel number C int =1.1±0.3 pFC int =0.8±0.3 pF

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun C int Test Results  Rec-A vs. Rec-B C int Channel number C int =2.2±0.8 pFC int =1.2±0.3 pF

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun New batch of full sensors  Petalet TOP sensors fabricated on 280 μm P-type Si wafers  4 New embedded PA designs (plus “basic design”)  4 different inter-metal oxide thicknesses: 1, 2, 3 and 4 μm  2 different track widths: 20 μm and 10 μm

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Technology 10 µm tracks 20 µm tracks

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Technology  Technology parameters (e.g. wafer bow) continuously monitored during the fabrication  Wafers suffer stress due to the TEOS deposition – limit to the achievable thickness of the inter-metal oxide

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Via resistance and yield  Daisy-chain test structure  Up to 200 via contacts tested in two wafers: 1 µm and 3 µm inter-metal SiO 2  2 daisy-chains tested per wafer  No fail seen  good yield  Average via resistance: R via = ± Ω Inhomogeneus etching of the inter-metal oxide

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun BASIC vs. VARYING; 20 µm Cint - 1 µm oxide thickness

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun RECT-A vs. VARYING; 20 µm Cint - 1 µm oxide thickness

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun BASIC; 10 µm vs. 20 µm Cint - 1 µm oxide thickness

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun RECT-A; 10 µm vs. 20 µm Cint - 1 µm oxide thickness

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun RECT-A; 10 um; Thickness 1 µm vs. 2 µm Cint –diff. oxide thickness

Miguel Ullán (CNM-Barcelona) RD50 meeting (Santander) – Jun Proposal of double-metal strip sensor technology to improve interconnection in large HEP experiments Initial fabrication demonstrated the concept and revealed some weaknesses Irregular noise problem faced New optimized designs and technology First sensors fabricated with new designs and technology All-neighbours interstrip capacitance tests to estimate the noise  Future work  Assembly of full modules (at DESY Berlin)  Noise tests and correlation with Cint values  Test beam with modules (diamond, DESY) –Cross-talk, pick-up, Efficiency-loss  Irradiation of sensors and repeat tests Conclusions & future work