RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Ground Based Tropospheric Profiling With the RPG- HATPRO 14 Channel Filterbank.

Slides:



Advertisements
Similar presentations
HATPRO – A Meteorological Observing System
Advertisements

Filterbank Radiometers for Atmospheric Profiling
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Liquid water path from microwave radiometers.
Radar/lidar observations of boundary layer clouds
Integrated Profiling at the AMF
© Crown copyright Met Office Future Upper-Air Network Development (FUND) WMO ET-UASI, Payerne June 2008, Agenda Item 3.4.
Target Separation and Classification using Cloud Radar Doppler-Spectra Matthias Bauer-Pfundstein, METEK GmbH Ulrich Görsdorf, Meteorologisches Observatorium.
An optimal estimation based retrieval method adapted to SEVIRI infra-red measurements M. Stengel (1), R. Bennartz (2), J. Schulz (3), A. Walther (2,4),
Temperature, water vapour and cloud liquid water measurements at Hornisgrinde using a microwave profiler F. Madonna, A. Giunta, A. Amodeo, G. D’Amico,
Atmospheric phase correction for ALMA Alison Stirling John Richer Richard Hills University of Cambridge Mark Holdaway NRAO Tucson.
NATS 101 Lecture 3 Climate and Weather. Climate and Weather “Climate is what you expect. Weather is what you get.” -Robert A. Heinlein.
Lee Smith Anthony Illingworth
Atmospheric Measurements at Capel Dewi field station Prof. Geraint Vaughan.
COPS Workshop, February 2008 Long-term water vapour comparison at the ARM Mobile Facility S. Crewell, U. Löhnert, S. Kneifel (U Cologne) D. Turner.
Bredbeck Workshop, 7 – 10 July 2003 Jörg Schulz Meteorological Institute, University of Bonn Harald Czekala RPG Radiometer.
1 NATS 101 Lecture 3 Climate and Weather. 2 Review and Missed Items Pressure and Height-Exponential Relationship Temperature Profiles and Atmospheric.
RPG Radiometer Physics GmbH WVR Workshop – Wettzell, 9. Oct Performance of water vapor radiometers at 22 and 183 GHz developed at RPG Thomas Rose,
Page 1© Crown copyright 2004 Recent progress in the development of Upper air Systems Catherine Gaffard Met Office Upper Air Team, University of Reading.
Ben Kravitz October 29, 2009 Microwave Sounding. What is Microwave Sounding? Passive sensor in the microwave to measure temperature and water vapor Technique.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
Spaceborne Radar for Snowfall Measurements
RPG Radiometer Physics GmbH Japan Met. Agency – Tsukuba / Japan, Nov./Dec RPG RPG founded in 1973 Specialized in the design and fabri- cation of.
Introduction Knowledge of the snow microstructure (correct a priori parameterization of grain size) is relevant for successful retrieval of snow parameters.
© Crown copyright Met Office Future Upper-Air Network Development (FUND)-Integration TECO 2008 St Petersburg Russia Catherine Gaffard, John Nash, Alec.
World Meteorological Organization Working together in weather, climate and water Joint Meeting of CBS EXPERT TEAM ON SURFACE-BASED REMOTELY-SENSED OBSERVATIONS.
Page 1© Crown copyright Distribution of water vapour in the turbulent atmosphere Atmospheric phase correction for ALMA Alison Stirling John Richer & Richard.
TECO-2006 Geneva, Dec. 3-5, Improvements in the Upper-Air Observation Systems in Japan M. Ishihara, M. Chiba, Y. Izumikawa, N. Kinoshita, and N.
Chalmers (Sweden), CNRS (France), DWD (Germany), GKSS (Germany), HUT (Finland), IAP Bern (Switzerland), IRE Moscow (Russia), KNMI (The Netherlands), RAL.
Page 1© Crown copyright D-VAR Retrieval of Temperature and Humidity Profiles from Ground-based Microwave Radiometers Tim Hewison and Catherine Gaffard.
Monitoring atmospheric water vapour at ESO’s Paranal observatory Florian Kerber (ESO) Calibration and Standardization of Large Surveys and Missions in.
Evaluation of Microwave Scatterometers and Radiometers as Satellite Anemometers Frank J. Wentz, Thomas Meissner, and Deborah Smith Presented at: NOAA/NASA.
Infrared Interferometers and Microwave Radiometers Dr. David D. Turner Space Science and Engineering Center University of Wisconsin - Madison
Background and Status of the Water-Vapour Radiometer at Effelsberg A. Roy U. Teuber R. Keller.
Thomas Rose Harald Czekala RPG Radiometer Physics GmbH Meckenheim, Germany HATPRO – A Meteorological Observing System.
Boundary layer temperature profile observations using ground-based microwave radiometers Bernhard Pospichal, ISARS 2006 Garmisch-Partenkirchen AMMA - Benin.
Page 1© Crown copyright 2004 Review of Progress in the Development of Operational Upper Air Technology May 2005.
Cabauw Experimental Site for Atmospheric Research - CESAR - Henk Klein Baltink Atmospheric Research Section.
ARM Data Overview Chuck Long Jim Mather Tom Ackerman.
Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Institutions: University of Miami; University.
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
Verification Verification with SYNOP, TEMP, and GPS data P. Kaufmann, M. Arpagaus, MeteoSwiss P. Emiliani., E. Veccia., A. Galliani., UGM U. Pflüger, DWD.
GPS GPS derived integrated water vapor in aLMo: impact study with COST 716 near real time data Jean-Marie Bettems, MeteoSwiss Guergana Guerova, IAP, University.
Boundary layer observations in West Africa using a ground-based 14-channel microwave radiometer Bernhard Pospichal and Susanne Crewell University of Cologne.
Thoughts on the Design of a WVR for Alan Roy (MPIfR) the Twin Telescope at Wettzell.
Matthew Shupe Ola Persson Paul Johnston Duane Hazen Clouds during ASCOS U. of Colorado and NOAA.
1 Susanne Crewell 1 & MICAM Team 2 1 Meteorologisches Institut Universität Bonn 2 Laurent Chardenal (CETP), Gunnar Elgered (Chalmers), Catherine Gaffard.
Radiometer Physics GmbH
Improvements in Microwave and Sub-mm Frontend Technology for Use up to 900GHz Radiometer Physics GmbH (RPG), Germany Harald Czekala RPG Thomas RoseRPG.
KNMI 35 GHz Cloud Radar & Cloud Classification* Henk Klein Baltink * Robin Hogan (Univ. of Reading, UK)
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
Studies of Advanced Baseline Sounder (ABS) for Future GOES Jun Li + Timothy J. Allen Huang+ W. +CIMSS, UW-Madison.
Satellite based instability indices for very short range forecasting of convection Estelle de Coning South African Weather Service Contributions from Marianne.
Layered Water Vapor Quick Guide by NASA / SPoRT and CIRA Why is the Layered Water Vapor Product important? Water vapor is essential for creating clouds,
A new method for first-principles calibration
7 th International Symposium on Tropospheric Profiling: Needs and Technologies (ISTP), June 2006, Boulder, CO ErgebnissErgebniss : High accuracy.
AMSR-E Vapor and Cloud Validation Atmospheric Water Vapor –In Situ Data Radiosondes –Calibration differences between different radiosonde manufactures.
Charles L Wrench RCRU Determining Cloud Liquid Water Path from Radiometer measurements at Chilbolton.
Instruments. In Situ In situ instruments measure what is occurring in their immediate proximity. E.g., a thermometer or a wind vane. Remote sensing uses.
Climate Change in the Arctic Ocean NABOS 2013 Atmospheric Boundary Layer (ABL) and Turbulence Tobias Wolf, Nansen Environmental and Remote Sensing Center.
Matthew Lagor Remote Sensing Stability Indices and Derived Product Imagery from the GOES Sounder
PRELIMINARY VALIDATION OF IAPP MOISTURE RETRIEVALS USING DOE ARM MEASUREMENTS Wayne Feltz, Thomas Achtor, Jun Li and Harold Woolf Cooperative Institute.
SCM x330 Ocean Discovery through Technology Area F GE.
Xie, X., U. Löhnert, S. Kneifel, and S. Crewell
Spatial and temporal distribution of integrated water vapour and liquid water path in the Murg valley observed by a scanning microwave radiometer Kneifel,
T. Rose (RPG), H. Czekala (RPG),
How well can we determine the tropopause
Radiometer Physics GmbH
Spaceborne Radar for Snowfall Measurements
OC3570 Operational Meteorology
KFPA CDR R. Norrod Feb 27, 2008.
Presentation transcript:

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Ground Based Tropospheric Profiling With the RPG- HATPRO 14 Channel Filterbank Radiometer Thomas Rose,Harald Czekala (Radiometer Physics GmbH)

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Microwave Bands Frequencies: Humidity Profiling: GHz Band (7 channels) LWP / IWV: 23.8 / GHz Temp. Profiling (Trop.): GHz Band (7 channels) Temp. Profiling (BL): GHz Band (4 channels) Spectral Bands of Operation: RPG-LWP RPG-HATPRO RPG-TEMPRO GHz 36.5/31.4 GHz 90 GHz RPG-HUMPRO RPG-TEMPRO RPG-LWP-U90

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 HATPRO Instrument Configuration

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 HATPRO Meteorological Station Weather Station and Time Reference: Rain Sensor: Provides rain flag for measurement documentation, control of super blower system GPS-Clock: Provides time reference standard for synchronization Humidity Sensor: Provides control of super blower system, documentation Temperature Sensor: Documentation of surface temperature Pressure Sensor: Documentation of baro-metric pressure, LN-target calibration Humidity Sensor Temp. Sensor Optional IR-Radiometer: Cloud base height detection, ceilometer function

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 HATPRO Rain / Dew Protection System removable dew blower Removal of dew and rain by: - strong blower system System allows for temperature profiling during rain

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 RPG-HATPRO Optical Performance 23.8 GHz, HPBW = 3.9°, Sidelobes: <-30 dB 55.0 GHz, HPBW = 1.9°, Sidelobes: <-30 dB (6.5)(4.0) humidity profiler temperature profiler

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Thermal Receiver Stabilisation Two stage thermal stabilisation system: Receiver stabilisation: <30 mK over full opera- ting temperature range (-30°C to + 45°C)

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 RPG-HATPRO Receiver Layout Dual Profiler Direct Detection Filterbank Receivers based on MMIC Technology:

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Synthesizer Emission from Heterodyne System Synthesizer emission from a heterodyne profiling 26.4 GHz detected by RPG-HATPRO during radiometer inter-comparison at DWD / Lindenberg, Germany, Sept./Oct. 2005

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Synthesizer Emission from Heterodyne System Heterodyne system turned off: RFI disappears. ‘Passive’ radiometers are sometimes not fully passive but emit interference signals in the RF bands.

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Compact Receiver Design Splitter and Filter Section Boosters and Detectors Video Amps, MUX, 16 Bit ADC 55 dB Pre-Amplifier Noise Injection Coupler GHz 7 Channel Filterbank Receiver Corrugated Feedhorn

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 RPG-HATPRO Receiver Allan Variance Receivers obey radiometer formula: or: Tested up to: t int = 1000 sec 30 sec. Integr. Time → ∆T = 0.1 K

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March GHz Brightness Temp. Noise in BL Mode 6 days time series of BL mode 58 GHz, 5° elevation (30 seconds integration time), RMS noise = 0.08 K

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Two Scanning Modes (Temperature Profiling) 2) Boundary Layer Mode: vertical Resolution: 50 m (<=1000 m) System Requirements: - Elevation scanning: 5° - 90° requires narrow beamwidth (2° HPBW), leads to 250 mm eff. beam diameter - low noise channels - long integration periods - parallel acquisition of all channels - high receiver stability 1) Zenith Mode: vertical viewing direction, GHz, 7 channels, used for full troposphere temperature profiles (<= 10 km)

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 RMS Errors of Both Observation Modes solid: boundary layer mode (4 channels) dotted: zenith mode (7 channels) dash-dotted: standard deviation of data set (360 samples) zenith mode zenith mode BL mode BL mode σ data

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Full Trop. Temperature Profile in Zenith Mode Inversion Full troposphere (zenith) scan. Inversion below 1km is not well resolved (about 1 K).

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Same Inversion Measured in BL Mode A: Radiosonde (red) and boundary layer scan (blue) profiles at the same time as above. A strong ground inversion of 4K is resolved. B: 6 hours later the inversion has disappeared (12:00). 6 hours later AB

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Boundary Layer Measured in Zenith Mode Zenith observation mode. In the lower 500 m layer the vertical structure is not resolved in detail (Data taken from 24. July to 28. July 2005 in Convective Storms Initiation Project, University of Salford / UK). Zenith observation mode. In the lower 500 m layer the vertical structure is not resolved in detail (Data taken from 24. July to 28. July 2005 in Convective Storms Initiation Project, University of Salford / UK).

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Boundary Layer Measured in BL Mode Boundary layer scanning mode. The vertical structure even in the lowest layer <100 m is clearly resolved.

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Boundary Layer Profiles Examples RPG-HATPRO, DWD Lindenberg, Sept. 2005

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Boundary Layer Profile Examples Benin, West Africa, January 2006 (AMMA)

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Development and Decay of Inversions

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Development and Decay of Inversions

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Verification of BL Measurements RPG-HATPRO at DWD Lindenberg, Sept meteorological tower (99 m) temp. sensors every 10 m RPG-HATPRO

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Direct Comparision at 10 / 100 m Levels Mast HATPRO

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Direct Comparision at 10 / 100 m Levels Mast HATPRO

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Direct Comparision at 10 / 100 m Levels dry adiabatic lapse rate mast HATPRO mast

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 BL HATPRO/Radiosonde Comparison bias RMS Distance radiosonde launching site ↔ HATPRO: 4 km

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 BL Mode HATPRO/Radiosonde Comparison

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Strong BL Temperature Inversions RPG-HATPRO at DWD Lindenberg, October 2005

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 BL HATPRO/Radiosonde Comparison

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Zenith Mode HATPRO/Radiosonde Comparison

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Zenith Mode HATPRO/Radiosonde Comparison

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Zenith Mode HATPRO/Radiosonde Comparison

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Zenith Mode HATPRO/Radiosonde Comparison bias RMS

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 HATPRO Humidity Profiling up to 10 km Benin, West Africa, 19. January 2006 (AMMA) 45 kg/m^2 27 kg/m^2

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 HATPRO Humidity Profiling Comparison with radiosonde data. RMS Error: 0.5 g/m 3

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 LWP / IWV time series High temp. and spatial res. LWP time series for cloud analysis temp. res.: 1 sec., abs. acc.: +/-20 g/m 2,RMS Noise: +/- 2 g/m 2 30 g/m 2 (=0.03 mm)

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Stability Indices Retrieval Lifted Index, K-Index, Showalter Index, Total Totals Index, CAPE (derived from 7 oxygen line and 7 water vapour line channels) TTI KI LI thunderstorms likely KO -2

RPG Radiometer Physics GmbH µRAD 06 – San Juan, Puerto Rico, Feb./March 2006 Summary Direct Detection Filterbank Design offers high temporal resolution, optimum radiometric noise performance and high stabilityDirect Detection Filterbank Design offers high temporal resolution, optimum radiometric noise performance and high stability Low cost due to integrated receiver design and in- house fabrication of all RF componentsLow cost due to integrated receiver design and in- house fabrication of all RF components High temporal and spatial resolution for LWP cloud observationsHigh temporal and spatial resolution for LWP cloud observations Superior performance of BL mode in the boundary layer has been demonstrated for temperature profilingSuperior performance of BL mode in the boundary layer has been demonstrated for temperature profiling Close to 100% duty cycle for all channelsClose to 100% duty cycle for all channels