Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.

Slides:



Advertisements
Similar presentations
Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
Advertisements

Maria Grazia Pia, INFN Genova Epistemic and systematic uncertainties in Monte Carlo simulation: Epistemic and systematic uncertainties in Monte Carlo simulation:
M. Glaser, G. Guatelli, B. Mascialino, M. Moll, M.G. Pia, F. Ravotti Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental.
1 COMPARISON BETWEEN PLATO ISODOSE DISTRIBUTION OF A 192 IR SOURCE AND THOSE SIMULATED WITH GEANT4 TOOLKIT F. Foppiano 1, S. Agostinelli 1, S. Garelli.
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Maria Grazia Pia, INFN Genova PhysicsLists in Geant4 Advanced Examples Geant4.
S. Guatelli, M.G. Pia – INFN Sezione di Genova Geant4-SPENVIS Workshop 3-7 October 2005 Leuven, Belgium Radioprotection.
Low Energy Electromagnetic Physics
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
Barbara MascialinoIEEE-NSSOctober 21 th, 2004 Application of statistical methods for the comparison of data distributions Susanna Guatelli, Barbara Mascialino,
S. Guatelli IEEE 2004 – NSS - Rome Dosimetry for Interplanetary Missions: the Geant4 REMSIM application S. Guatelli 1, P. Nieminen 2, M.G. Pia 1 IEEE NSS,
Maria Grazia Pia Experimental validation of models in the pre-equilibrium and nuclear de-excitation phase G.A.P. Cirrone 1, G. Cuttone 1, F. Di Rosa 1,
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Maria Grazia Pia, INFN Genova PhysicsLists in Geant4 Advanced Examples M.G.
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
Susanna Guatelli Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 1 INFN Genova,
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Zaragoza, September 15 th, 2005 Geant4 and the underground physics community... (part.
Maria Grazia Pia, INFN Genova Geant4 Electromagnetic Validation (mostly electromagnetic, but also a bit of hadronic…) K. Amako, G.A.P. Cirrone, G. Cuttone,
Maria Grazia Pia, INFN Genova CERN, 26 July 2004 Background of the Project.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
S. Guatelli, M.G. Pia – INFN Sezione di Genova Monte Carlo April Radiation protection for interplanetary.
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Budker Inst. of Physics IHEP Protvino MEPHI Moscow Pittsburg University.
Maria Grazia Pia, INFN Genova and CERN1 Geant4 Hadron Kinetic Model for intra-nuclear transport Maria Grazia Pia CERN/IT and INFN, Sezione di Genova L.Bellagamba.
Comparison of data distributions: the power of Goodness-of-Fit Tests
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
Recent Developments in Geant4 Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group)
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
Maria Grazia Pia Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation Simulation for LHC Radiation.
Provide tools for the statistical comparison of distributions  equivalent reference distributions  experimental measurements  data from reference sources.
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
Maria Grazia Pia, INFN Genova Statistical Toolkit Recent updates M.G. Pia B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
APPLICATION TO THE HADROTHERAPY FOR OCULAR MELANOMAS G.A. Pablo Cirrone Qualified Medical Physicist and PhD Student University of Catania and Laboratori.
IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
1 Status and Plans for Geant4 Physics Linear Collider Simulation Workshop III 2-5 June 2004 Dennis Wright (SLAC)
Hadronic Physics II Geant4 Users’ Tutorial CERN February 2010 Gunter Folger.
Maria Grazia Pia, INFN Genova Update on the Goodness of Fit Toolkit M.G. Pia B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Precision analysis of Geant4 condensed transport effects on energy deposition in detectors M. Batič 1,2, G. Hoff 1,3, M. G. Pia 1 1 INFN Sezione di Genova,
F. Foppiano, M.G. Pia, M. Piergentili
Barbara MascialinoMonte Carlo 2005Chattanooga, April 19 th 2005 Monte Carlo Chattanooga, April 2005 B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon,
ESTRO, Geneva 2003 The importance of nuclear interactions for dose calculations in proton therapy M.Soukup 1, M.Fippel 2, F. Nuesslin 2 1 Department of.
Geant4 Training 2004 Short Course Katsuya Amako (KEK) Gabriele Cosmo (CERN) Giuseppe Daquino (CERN) Susanna Guatelli (INFN Genova) Aatos Heikkinen (Helsinki.
New Geant4 Electromagnetic Physics Developments for Ion Therapy Applications Toshiyuki Toshito 1, Alexander Bagulya 2, Anton Lechner 3,4, Vladimir Ivanchenko.
Maria Grazia Pia, INFN Genova and CERN1 Geant4 highlights of relevance for medical physics applications Maria Grazia Pia INFN Genova and CERN.
Implementation of a New Monte Carlo Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the related Dose Distributions.
Koichi MurakamiGeant4 Physics Verification and Validation (17-19/Jul./2006) 1 Results from the recent carbon test beam at HIMAC Koichi Murakami Statoru.
Validation of Geant4 against the TARC benchmark: Testing neutron production, transportation and interaction TARC – experimental set-up and aims Geant4.
Geant4 REMSIM application
Summary of hadronic tests and benchmarks in ALICE
Summary for the Physics Lists session (Thursday)
F. Foppiano, S. Guatelli, B. Mascialino, M. G. Pia, M. Piergentili
Radioprotection for interplanetary manned missions
Hadronic physics validation of Geant4
Hadronic Physics in Geant4
Geant4 physics validation: Bragg Peak
Collaborative planning for ion physics activities
The Hadrontherapy Geant4 advanced example
An update on the Goodness of Fit Statistical Toolkit
Short Course IEEE NSS/MIC 2003 Katsuya Amako (KEK) Makoto Asai (SLAC)
Low Energy Electromagnetic Physics Use Cases and PhysicsLists
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
The Geant4 Hadrontherapy Advanced Example
Comparison of data distributions: the power of Goodness-of-Fit Tests
Presentation transcript:

Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic models against proton data G.A.P. Cirrone 1, G. Cuttone 1, F. Di Rosa 1, S. Guatelli 1, B. Mascialino 2, M.G. Pia 1, G. Russo 2 1 INFN LNS, Catania, Italy 2 INFN Genova, Italy IEEE Nuclear Science Symposium San Diego, 30 October – 4 November 2006

Geant4-INFN (Genova-LNS) Team Geant4 Toolkit objective criteria Provide objective criteria to evaluate Geant4 physics models precision –Document their precision against experimental data allsystematically –Test all Geant4 physics models systematically –Quantitative statistical methods –Quantitative tests with rigorous statistical methods Wide set of physics processes and models Versatility of configuration according to use cases How to choose most appropriate model the most appropriate model for my simulation?

Geant4-INFN (Genova-LNS) Team Adopt the same method also for hadronic physics validation –address all modeling options –start from the bottom (low energy) –progress towards higher energy based on previous sound assessments –statistical analysis of compatibility with experimental data Guidance to users based on objective ground –not only “educated-guess” PhysicsLists K. Amako et al., Comparison of Geant4 electromagnetic physics models against the NIST reference data IEEE Trans. Nucl. Sci., Vol. 52, Issue 4, Aug. 2005, pp Statistical Toolkit Goodness-of-Fit test Quantitatitative comparison of experimental - simulated distributions

Geant4-INFN (Genova-LNS) Team Proton Bragg peak Compare various Geant4 electromagnetic models Assess lowest energy range of hadronic interactions – elastic scattering –pre-equilibrium + nuclear deexcitation to build further validation tests on solid ground Results directly relevant to various experimental use cases Oncological radiotherapy Medical Physics LHC Radiation Monitors High Energy Physics Space Science Astronauts’ radiation protection

Geant4-INFN (Genova-LNS) Team Relevant Geant4 physics models Standard Low Energy – ICRU 49 Low Energy – Ziegler 1977 Low Energy – Ziegler 1985 Low Energy – Ziegler 2000 New “very low energy” models Parameterized (à la GHEISHA) Nuclear Deexcitation –Default evaporation –GEM evaporation –Fermi break-up Pre-equilibrium –Precompound model –Bertini model Elastic scattering –Parameterized models –Bertini Intra-nuclear cascade –Bertini cascade –Binary cascade Hadronic Electromagnetic Subset of results shown here Full set of results in publication coming shortly

Geant4-INFN (Genova-LNS) Team Experimental data CATANA hadrontherapy facility in Catania, Italy –high precision experimental data satisfying rigorous medical physics protocols –Geant4 Collaboration members Validation measurements Markus Ionization chamber 2 mm Sensitive Volume = 0.05 cm 3 Resolution 100  m Markus Chamber

Geant4-INFN (Genova-LNS) Team Geant4 simulation Accurate reproduction of the experimental set-up quantitative This is the most difficult part to achieve a quantitative Geant4 physics validation Geometrybeam Geometry and beam characteristics must be known in detail and with high precision Ad hoc beam line set-up for Geant4 validation to enhance peculiar effects of physics processes E proton = 63.5 MeV  E = 300 keV

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Electromagnetic options  Standard EM  Low Energy EM – ICRU 49  Low Energy EM – Ziegler 1977  Low Energy EM – Ziegler 1985  Low Energy EM – Ziegler 2000

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Standard EM: p, ions, , e- e+p-value CvMKSAD Left branch Right branch Whole curve CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data Standard EM

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+p-value CvMKSAD Left branch Right branch Whole curve CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data LowE EM – ICRU49

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Low Energy EM – Ziegler 1977: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ 1 M events mm Geant4 Experimental datap-value CvMKSAD Left branch Right branch Whole curve LowE EM – Ziegler 1977 CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test

Geant4-INFN (Genova-LNS) Team Electromagnetic processes LowE EM – Ziegler 1985 Low Energy EM – Ziegler 1985: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ Subject to further investigation 1 M events mm Geant4 Experimental data

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Low Energy EM – Ziegler 2000: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ Subject to further investigation 1 M events mm Geant4 Experimental data LowE EM – Ziegler 2000

Geant4-INFN (Genova-LNS) Team Electromagnetic processes Summary p-value LowE ICRU49 LowE Ziegler 1977 Standard Left branch (CvM) Right branch (KS) Whole curve (AD) CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test LowE – ICRU49 Best EM option: LowE – ICRU49 Selected for further EM + Hadronic tests

Geant4-INFN (Genova-LNS) Team Electromagnetic processes + Elastic scattering Elastic scattering options  HadronElastic process with LElastic model  HadronElastic process with BertiniElastic model  UHadronElastic process with HadronElastic model

Geant4-INFN (Genova-LNS) Team EM + Elastic scattering Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ LElastic HadronElastic with LElasticp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 LElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data

Geant4-INFN (Genova-LNS) Team EM + Elastic scattering Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ HadronElastic UHadronElastic with HadronElasticp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 HadronElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 0.5 M events mm Geant4 Experimental data

Geant4-INFN (Genova-LNS) Team Electromagnetic processes + Elastic scattering + Hadronic inelastic scattering Hadronic Inelastic options  Precompound with Default Evaporation  Precompound with GEM Evaporation  Precompound with Default Evaporation + Fermi Break-up  Bertini

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ LElastic HadronElastic with LElastic Precompound Default Evaporation Precompound with Default Evaporationp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 LElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data Precompound default

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Standard EM: p, ions, , e- e+ LElastic HadronElastic with LElastic Precompound Default Evaporation Precompound with Default Evaporationp-value CvMKSAD Left branch Right branch Whole curve CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data Standard EM LElastic Precompound default

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ HadronElastic Precompound Default Evaporation UHadronElastic with HadronElastic Precompound with Default Evaporationp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 HadronElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 0.5 M events mm Geant4 Experimental data Precompound default

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ LElastic HadronElastic with LElastic Precompound GEM Evaporation Precompound with GEM Evaporationp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 LElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 0.5 M events mm Geant4 Experimental data Precompound with GEM Evaporation

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ LElastic HadronElastic with LElastic Precompound Fermi Break-up Precompound with Fermi Break-upp-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 LElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 0.5 M events mm Geant4 Experimental data Precompound with Fermi Break-up

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ LElastic HadronElastic with LElastic Bertini Inelastic p-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 LElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 1 M events mm Geant4 Experimental data Bertini Inelastic

Geant4-INFN (Genova-LNS) Team EM + hadronic physics Low Energy EM – ICRU49: p, ions Low Energy EM – Livermore: , e- Standard EM:e+ HadronElastic with BertiniElastic Bertini Inelastic p-value CvMKSAD Left branch Right branch Whole curve LowE EM – ICRU49 BertiniElastic CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test 0.5 M events mm Geant4 Experimental data Bertini Inelastic

Geant4-INFN (Genova-LNS) Team Electromagnetic + Hadronic Summary p-value Standard LElastic Precompound LowE ICRU49 LElastic Precompound GEM LowE ICRU49 LElastic Bertini Inelastic LowE ICRU49 LElastic Precompound Fermi Break-up LowE ICRU49 LElastic Precompound LowE ICRU49 HadronElastic Precompound LowE ICRU49 Bertini Elastic Bertini Inelastic Left branch (CvM) Right branch (KS) Whole curve (AD) Key ingredients electromagnetic  Precise electromagnetic physics elastic scattering  Good elastic scattering model pre-equilibrium  Good pre-equilibrium model

Geant4-INFN (Genova-LNS) Team Conclusion Publication coming soon with complete results Selection of Geant4 physics models (aka PhysicsList) based on quantitative experimental validation, rather than just “educated guess”...2-year project to get there Systematicquantitativeall Systematic, quantitative validation of all Geant4 electromagnetic and hadronic models in the energy range < 100 MeV against high precision experimental data Document Geant4 simulation accuracy Provide guidance for Geant4 use based on objective ground