Principles of Fracture Treatment

Slides:



Advertisements
Similar presentations
CONSERVATIVE TREATMENT OF FRACTURES
Advertisements

Fracture Description & Classification
Diaphyseal fractures in children Mohamed M. Zamzam Associate Professor & Consultant Pediatric Orthopedic Surgeon KKUH, Riyadh, Saudi Arabia.
Introduction to Pediatric Orthopaedics: Common Fractures
The principles of intra- articular fracture care Joseph Schatzker M.D., B.Sc.,(med.), F.R.C.S.(C )
Tibial Plateau Fractures
General principles of fractures III
Sadeq Al-Mukhtar Consultant orthopaedic surgeon
Fractures.
 The animal will not be able to use the leg at all and if able will hold the leg up. Sometimes the foot will be rested on the ground when the animal.
External Fixation Indications and Techniques
Fracture Classification & Description Kishore Tipirneni MD.
Recognizing fractures
Pat Fleming Consultant Orthopaedic Surgeon
FRACTURES By Mahima Charan 4th Year Medical Student.
Paediatric fractures in the Emergency Department October 2012
Definition; classification; causes fractures. ORTHOPEDICS History “ortho” straight “paedia” child Straightening of musculoskeletal deformities in children.
Fracture shaft of the femur While the powerful muscles surrounding the femur protect it from all but the powerful forces it cause sever displacement of.
Extracapsular Fractures
Pediatric Forearm Fractures OTA RCFC Pediatric Considerations Periosteum Greenstick / Incomplete fractures Remodeling Cast technique.
PRINCIPLES OF FRACTURES (ADULTS)
Dr Mohamed El Safwany, MD..  The student should be able at the end of this lecture to recognize various radiographic principles of fractures.
1 st Lecture Biome II Dr.Manal Radwan Salim Lecturer of Physical Therapy Pharos University Fall
FR Presented by Dina Metwaly AC T URE S. FRACTURE A few of the reasons fractures occur are because of: Trauma Osteoporosis Osteogenesis Imperfecta (brittle.
OSCE EXAM SIMULATION WITH THE IDEAL ANSWER second part
Fractures ALI B ALHAILIY.
Fractures general management. A high velocity injury should always be treated according to the Advanced Trauma Life Support (ATLS) guidelines with attention.
FRACTURES AND SOFT TISSUE INJURIES. FRACTURES A broken or cracked bone Great forces are required to break a bone, unless it is diseased or old Bones that.
Pediatric Femoral Shaft Fractures
Radio-Ulnar Fractures
Pathomechanics of Bone
Applied Anatomy Long bones and fractures. Basic Anatomy of Long Bones Physis Epiphysis Diaphysis Metaphysis.
Supracondylar fractures of the femur Usually affect: Usually affect: 1. Young adults from high energy trauma. 2. Elderly osteoporotic persons.
Orthopaedic Surgery Principles and Definitions Dr.Metwally Shaheen ( FRCSI) Ortho. Consultant ( Head 0f Orthopedic Department SGH-J )
Fracture treatment A/ Reduce the fracture: Closed reduction Open reduction Articular fractures: Need anatomical reduction.
Treatment of Fractures Prepared by: Ola Ahmad Abu-Laban Gp D1.
Musculoskeletal Radiology 2 Fractures.  Closed /simple fracture: is a broken bone that does not penetrate the skin  Open (compound) fracture: involve.
Fracture Classification Amir Hooshang Vahedi MD - Physiatrist.
Fractures By Amal.
Displacement Described as: Distal in relation to proximal Un-displaced Shift Sideways Shortening Distraction Angulation In all planes Rotation.
Introduction to Fractures Fractures - definitions, healing and management.
FRACTURES IN CHILDREN DR MOHD KHAIRUDDIN ORTHOPAEDIC SURGEON Faculty of Medicine CUCMS.
FractureFracture by Dr. Nimer Khraim DVMS, BVMS, MVSc.
Musculoskeletal Trauma
Fractures Treatment and Complications
FRACTURES AND DISLOCATIONS OF HAND AND FOREARM
Butterfly Fracture This type of fracture has slight comminution at the fracture site which looks largely like a butterfly. The fracture site has butterfly.
Prof. Mamoun Kremli AlMaarefa College Principles of Fractures & Fracture Management.
Introduction to fractures and trauma. Principles of fractures Fracture : it is break in the structural continuity of the bone. the bone. It is of two.
Fracture neck of the radius
Fracture Classification
Complication of p.o.p : 1- tight cast lead to vascular compression and
Principles Of Fractures(1)
TIBIA FRACTURES. The tibia is subcutaneous.
Fracture of tibia ..
Prof Dr Osama Amin Prof Of Orthopedics Qassim University.
Fractures of the Forearm Bones 2012 Muzahem M.Taha Ass.Prof. in Ortho.and Spine surgery FICMS,Iraq. Diploma in spine surgery.SanDiego,USA. Felloship in.
A Thesis Presented to the Graduate School Faculty of Medicine, University of Alexandria In partial fulfilment of the requirements of the Master Degree.
Intertrochanteric fracture neck of femur
Pelvic injuries.
Fractures of the radius and ulna
Chapter 70 Nursing Care for Patients with Bone Fracture
Femoral shaft fractures
Fracture of shaft of femur
PRINCIPLES OF TREATMENT OF FRACTURES
PRINCIPLE OF FRACTURE MANAGEMENT DR S SOMBILI 2012
Tibial plateau fracture
AOT Basic Principles Course
Presentation transcript:

Principles of Fracture Treatment

What is a (bony) fracture? Disruption of a bone’s normal structure or “wholeness” Crack, break, or rupture in a bone There are many how’s and why’s to bony fractures Terms used to describe each are related

Definition of Fracture There are 2 types of # in which this is not so: Pathological fract. Stress fract.

Pathological fracture : It is one in which a bone is broken through an area weakened by pre-existing disease , & by a degree of force that would have left normal bone intact e.g osteoporosis , O.M. , bone tumours.

Stress fracture : Bone, like other materials, reacts to repeated loading. On occasion, it becomes fatigued & a crack develops e.g military installations, ballet dancers & athletes.

Diagnosis Clinical picture Radiography

Clinical Features of Fracture History of trauma Symptoms & signs: 1. Pain & tenderness 2. Swelling 3. Deformity 4. Crepitus 5. Loss of function 6. Abnormal move. 7. N.V. injuries

Orthopaedic History A good general orthopaedic history contains: Onset, Duration, and Location of a problem Limitations and debilitation attributed to the problem Good surgical history, especially with regards to orthopaedic surgeries and prior anesthesia Co-morbid conditions that contribute to the problem or will preclude healing in some manner

Physical Exam Basics Inspect and Palpate everything- start with normal structures and move to abnormal Range of motion in all planes Strength Sensation Reflexes Gait Stability

Physical Exam Basics NVI What does this mean? Neurologic exam- Always document the neurologic status. Some fractures are associated with nerve injuries and knowing the status of the nerve is critical Vascular exam- Always check for pulses distal to the fracture sight. Missed vascular injuries can be devastating

Pre-reading Musculoskeletal Radiographs 1: Name, date, old films for comparison 2: What type of view(s) 3: Identify bone(s) & joint(s) demonstrated 4: Skeletal maturity (physes: growth plates) 5: Soft tissue swelling 6: Bones & joints (fractures & dislocations)

Physical Exam NEVER trust someone else’s exam. ALWAYS put your hands on the patient and see for yourself Always trust your exam- you WILL pick up something that someone else has missed at some point

OPEN AND CLOSED FRACTURES

Intro to Reading X-rays Reading a radiograph is essentially describing the anatomy of a certain structure In order for it to be universal and understandable for others, clarity and precision are essential A fracture is described based on the findings of the physical exam and a review of radiographs

Reading X-rays Say what it is- what anatomic structure are you looking at and how many different views are there Regional Location- Diaphysis (rule of 1/3), Metaphysis, Epiphysis including intra and extra-articular Direction of the fracture line- Transverse, Oblique, Spiral

Reading X-rays Condition of the bone- comminution (3 or more parts), Segmental (middle fragment), Butterfly segment, incomplete, avulsion, stress, impacted Deformity-Displacemtent (distal with respect to proximal), angulation (varus, valgus), rotation, shortening (in cm’s), distraction

Fracture Pattern Transverse Produced by a distracting or tensile force

Fracture Pattern Spiral Produced by a torsional force

Fracture Pattern Produced by pure bending force Butterfly

Fracture Pattern Comminuted Broken into many pieces- high energy with combined forces

Displacement Characterized by % of bone contact on either view

Angulation Distal fragment relative to proximal Varus, Valgus, Anterior, Posterior Apex of angle formed by fragments E.g., Apex Anterior, Apex Medial, Apex Ulnar

Location ie distal third of tibia Commonly described in thirds of affected bone ie distal third of tibia ie junction of proximal and middle third of femur If fractured at two levels describe as segmental

Location-Diaphysis Shaft portion of bone

Location-Metaphysis The ends of the bone (if the fracture goes into a joint it is described as intra- articular)

Now All Together Transverse fracture of the femur at the middle third- distal third junction with 100% displacement and varus (or apex lateral) angulation

What do you see?

What do you see?

What do you see?

Mnemonic: OLD ACID O: Open vs. closed L: Location D: Degree (complete vs. incomplete) A: Articular extension C: Comminution / Pattern I: Intrinsic bone quality D: Displacement, angulation, rotation

O: Open vs. Closed Open fracture Closed fracture AKA: “Compound fracture” A fracture in which bone penetrates through skin; “Open to air” Some define this as a fracture with any open wound or soft tissue laceration near the bony fracture Closed fracture Fracture with intact overlying skin

L: Location Which bone? Thirds (long bones) Anatomic orientation Epiphysis Which bone? Thirds (long bones) Proximal, middle, distal third Anatomic orientation E.g. proximal, distal, medial, lateral, anterior, posterior Anatomic landmarks E.g. head, neck, body / shaft, base, condyle Segment (long bones) Epiphysis, physis, metaphysis, diaphysis Physis Metaphysis Diaphysis (Shaft) Articular Surface

D: Degree of Fracture Complete Incomplete Complete cortical circumference involved Fragments are completely separated Incomplete Not fractured all the way through “Only one cortex” involved e.g “Greenstick fracture”

A: Articular Extension / Involvement Intra-articular fractures “Involves the articular surface” Dislocation Loss of joint surface / articular congruity Fracture-dislocation

C: Comminution / Pattern Transverse (Simple) Oblique (Simple) Spiral (Simple) Linear / longitudinal Segmental Comminuted Compression / impacted “Buckle / Torus” Distraction / avulsion

C: Comminution / Pattern Transverse (Simple)

C: Comminution / Pattern Oblique (Simple) Spiral (Simple) Oblique in 2+ views

C: Comminution / Pattern Linear / longitudinal / split

C: Comminution / Pattern Segmental Bone broken in 2+ separate places; Fx lines do not connect

C: Comminution / Pattern Comminuted Broken, splintered, or crushed into >3 pieces

C: Comminution / Pattern Compression Impacted (e.g. “Buckle / Torus”)

C: Comminution / Pattern “Buckle / Torus”

C: Comminution / Pattern Distracted Avulsion

I: Intrinsic Bone Quality Normal Osteopenia Decr’d density

I: Intrinsic Bone Quality Osteopetrosis Incr’d density Normal

I: Intrinsic Bone Quality Osteopoikilosis Focal areas of incr’d density Normal

D: Displacement, Angulation, Rotation Extent to which Fx fragments are not axially aligned Fragments shifted in various directions relative to each other Convention: describe displacement of distal fragment relative to proximal Oblique tibial shaft Fx b/w distal & middle thirds; laterally displaced

D: Displacement, Angulation, Rotation Extent to which Fx fragments are not anatomically aligned In a angular fashion Convention: describe angulation as the direction the apex is pointing relative to anatomical long axis of the bone (e.g. apex medial, apex valgus) R Tibial shaft Fx b/w prox & middle thirds, angulated apex lateral (apex varus)

D: Displacement, Angulation, Rotation Valgus Apex medial Parallel No angulation Varus Apex lateral

D: Displacement, Angulation, Rotation Extent to which Fx fragments are rotated relative to each other Convention: describe which direction the distal fragment is rotated relative to the proximal portion of the bone

D: Displacement, Angulation, Rotation PA view of rotated hip Fx Greater trochanter perpendicular to film Normal PA view of hip Greater trochanter in profile

Salter-Harris Fractures

Other signs of fractures Callus / Osteosclerosis Periosteal reaction

Other signs of fractures Fat pad sign / “Sail sign”

Conclusions Know how to read X-rays (Patients expect this & we order a lot of them) Communicate and share with your consultants (It affects patient outcomes) Pre-reading Describing fractures

Fracture Classification Anat. Location Direction of fract. Line Wherther the fract. Is linear or comminuted Condition of overlying S.T. Mechnism of injury AO classification

AO Classification A : Simple fract. B : Wedge fract. C : Complex fract.

AO Classification

AO Classification B= wedge fract. B3 wedge fract fragmented wedge

AO Classification

Mechanism of Injury Classification Direct trauma Indirect Trauma

Direct trauma : Tapping fractures Crushing fractures Penetrating fractures - High velocity missiles > 2500 f/s - Low velocity missiles < 2500 f/s

Indirect Trauma : Traction or tension fract. angulation fract. Rotational fract. Compression fract.

Principles of fractures Fracture repair Fracture repair is a tissue regeneration process rather than a healing process the injured bone is replaced by bone. The process of repair varies according to: -The type of bone involved. -The amount of movement at the fracture. -The closeness of the fracture surfaces.

Principles of fractures Rate of union Unfavorable factors Impairment of blood supply Infection Excessive movement Presence of tumor Synovial fluid in intraarticular Fx. Interposition of soft tissue Any form of Nicotine

Definitive fracture treatment The goal of fracture treatment is to obtain union of the fracture in the most anatomical position compatible with maximal functional return of the extremity. Conservative Operative

Principles of Treatment Treat the Patient, not only the fracture Restriction of movement Prevention of displacement Alleviation of pain Promote soft-tissue healing Try to allow free movement of the unaffected parts Splint the fracture, not the entire limb 72

Principles of Treatment Methods of holding reduction: Sustained traction Cast splintage Functional bracing Internal fixation External fixation 73

Definitive Fracture Fixation Options Casts and Splints Appropriate for many fractures especially hand and foot fractures Adults typically will get plaster splints initially transitioned to fiberglass casts as swelling decreases Kids typically will get fiberglass casts 74

 CONSERVATIVE TREATMENT 2- CAST CLOSED, UNDISPLACED CLOSED, REDUCIBLE  CONSERVATIVE TREATMENT 2- CAST Below Knee Above Knee

Complications of cast splintage Liable to appear once the patient has left the hospital; added risk of delay before the problem is attended to Tight cast Pressure sores Skin abrasion or laceration Loose cast 77

Functional Bracing Prevents joint stiffness while still permitting fracture splintage and loading Most commonly for fractures of the femur or tibia Since its not very rigid, it is usually applied only when the fracture is beginning to unite Comes out well on all four of the basic requirements: “hold” “move” “speed” “safe” 78

Definitive Fracture Fixation Options Traction Useful in patients who are too sick for surgery Useful to maintain alignment until definitive fixation 79

Traction by gravity Balanced Traction Eg. Fractures of the humerus Skin traction: adhesive strapping kept in place by bandages Skeletal traction: stiff wire/pin inserted through the bone distal to the fracture Femur fracture managed with skeletal traction and use of a Steinmann pin in the distal femur. 80

Operative ORIF (open reduction internal fixat.) External fixation

Indications of ORIF - absolute - relative

Indications of ORIF Absolute Indications for ORIF of fractures Unable to obtain an adequate reduction Displaced intra-articular fractures Certain types of displaced epiphyseal fractures Major avulsion fractures where there is loss of function of a joint or muscle group Non-unions Re- implantations of limbs or extremities

Indications of ORIF Relative Indications for ORIF of fractures Delayed unions Multiple fractures to assist in care and general management Unable to maintain a reduction Pathological fractures To assist in nursing care To reduce morbidity due to prolonged immobilisation For fractures in which closed methods are known to be ineffective

Indications of ORIF Fractures accompanying nerve of vessel injury Questionable Fractures accompanying nerve of vessel injury Open fractures Cosmetic considerations Economic considerations

Open Operation Operative reduction under direct vision is indicated: When closed reduction fails When there is a large articular fragment that needs accurate positioning 86

Open Operation 3. For avulsion fractures in which the fragments are held apart by muscle pull 4. When an operation is needed for associated injuries 5. When a fracture will anyhow need internal fixation to hold it 87

Types of Internal Fixation - Pin & wire fixat. - Screw fixat. - Plate & screws fixat. - Intra-medullary fixat.

Plate & screws fixat. Functional types: Compression plates Neutralization plates Buttress plates Bridge plates LC- DCP Liss plates Locking plates & screws

Definitive Fracture Fixation Options Open Reduction and Internal fixation with Plates and screws Used for many fractures especially those involving joints 91

Intra-medullary fixat. Centro-medullary - Unlocked -Interlocking(static – dynamic – double locked) Condylocephalic Cephalomedullary

Definitive Fracture Fixation Options Intramedullary Nails Treatment of choice for most tibia and femur fractures Used in selected humerus and forearm fractures 95

Internal Fixation “holds” securely with precise reduction “movements” can begin at once (no stiffness and edema) “speed”: patient can leave hospital as soon as wound is healed, but full weight bearing is unsafe for some time “safety”= biggest problem! SEPSIS!!! Risk depends on: the patient, the surgeon, the facilities 100

Indications for internal fixation Fractures that cannot be reduced except by operation Fractures that are inherently unstable and prone to re-displacement after reduction Fractures that unite poorly and slowly Pathological fractures Multiple fractures Fractures in patients who present severe nursing difficulties 101

Interfragmentary/Lag Screws: Fixing small fragments onto the main bone Plates and screws Metaphyseal fractures of long bones Diaphyseal fractures of the radius and ulna Intramedullary nails Long bones Locking screwsresist rotational forces Kirschner Wires Hold fragments together where fracture healing is predictably quick 102

Definitive Fracture Fixation Options Joint Replacement Used in displaced femoral neck fractures in geriatric patients Allows for early ambulation Occasionally used in geriatric pts with comminuted shoulder or elbow fractures 103

Complications of internal fixation Most are due to poor technique, equipment, or operating conditions Infection Iatrogenic infection is now the most common cause of chronic osteomyelitis Non-union Excessive stripping of the soft tissues unnecessary damage to the blood supply in the course of operative fixation rigid fixation with a gap between the fragments Implant failure Refracture 104

Definitive Fracture Fixation Options External Fixation Used primarily in the treatment of open fractures and pelvis fractures Also useful as temporary stabilization prior to definitive fixation 105

External Fixation Permits adjustment of length and angulation Some allow reduction of the fracture in all 3 planes. Especially applicable to the long bones and the pelvis. Indications: Fractures of the pelvis, which often cannot be controlled quickly by any other method. Fractures associated with severe soft-tissue damage where the wound can be left open for inspection, dressing, or definitive coverage. 106

External Fixation 3. Severely comminuted and unstable fractures, which can be held out to length until healing commences. 4. Fractures of the pelvis, which often cannot be controlled quickly by any other method. 5. Fractures associated with nerve or vessel damage. 6. Infected fractures, for which internal fixation might not be suitable. 7. Un-united fractures, where dead or sclerotic fragments can be excised and the remaining ends brought together in the external fixator; sometimes this is combined with elongation in the normal part of the shaft 107

Complications of external fixation High degree of training and skill! Often used for the most difficult fractures increased likelihood of complications Damage to soft-tissue structures Over-distraction No contact between the fragments union delayed/prevented Pin-track infection 108

OPEN FRACTURES Initial Management At the scene of the accident In the hospital 109

Types of Open Fractures Gustilo’s classification of open fractures: Type 1: low-energy fracture with a small, clean wound and little soft-tissue damage Type 2: moderate-energy fracture with a clean wound more than 1 cm long, but not much soft-tissue damage and no more than moderate comminution of the fracture. Type 3: high-energy fracture with extensive damage to skin, soft tissue and neurovascular structures, and contamination of the wound. 110

Types of Open Fractures Type 3 A: the fractured bone can be adequately covered by soft tissue Type 3 B: can’t be adequately covered, and there is also periosteal stripping, and severe comminution of the fracture Type 3 C: if there is an arterial injury that needs to be repaired, regardless of the amount of other soft-tissue damage 111

Types of Open Fractures The incidence of wound infection correlates directly with the extent of soft-tissue damage, <2% in type 1 >10% in type 3 rises with increasing delay in obtaining soft tissue coverage of the fracture. 112

Principles of Treatment of Open Fractures All open fractures assumed to be contaminated Prevent infection! The essentials: Prompt wound debridement Antibiotic prophylaxis Stabilization of the fracture Early definitive wound cover Repeated examination of the limb because open fractures can also be associated with compartment syndrome 113

CONTRAINDICATIONS TO SURGICAL REDUCTION AND STABILIZATION Situations in which there is a high probability for failure with operative treatment are as follows: 1. Osteoporotic bone that is too fragile to allow stabilization by internal or external fixation. 2. Soft tissues overlying the fracture or planned surgical approach of such poor quality because of scarring, burns,active infection, or dermatitis . 3. Active infection or osteomyelitis.

CONTRAINDICATIONS TO SURGICAL REDUCTION AND STABILIZATION 4. Fracture comminution to a degree that does not allow successful reconstruction. This is most commonly seen in severe intraarticular fractures. 5. General medical conditions that are contraindications to anesthesia are generally contraindications to the surgical treatment of fractures. 6. Undisplaced or stable impacted fractures in acceptable position do not require surgical exposure or reduction. 7. Inadequate equipment, manpower, training, and experience.

Thank you