8/6/2002 AIAA/AAS Astrodynamics Specilaist Conference JPL Caltech Lunar Orbit Lunar Sample Return via.

Slides:



Advertisements
Similar presentations
15th AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, Colorado Low Energy Interplanetary Transfers Using the Halo Orbit Hopping Method with STK/Astrogator.
Advertisements

Low Energy Transfer Applications MWL - 1 JPL 2004 Summer Workshop on Advanced Topics in Astrodynamics Shoot the Moon Shadowing Unstable.
The ballistic support of the “SPECTR-RG” spacecraft flight to the L2 point of the Sun-Earth system I.S. Ilin, G.S. Zaslavskiy, S.M. Lavrenov, V.V. Sazonov,
22 April 2002 Shane Ross Surrey Astrodynamics Workshop Lunar Orbit LL 1 Lunar Orbit Halo Orbit at Lunar L 1 Lunar Gateway Module Control & Dynamical Systems.
Egemen Kolemen1, N. Jeremy Kasdin1 & Pini Gurfil2
The BepiColombo Mission
Solar Imaging Radio Array (SIRA) Trajectory and Formation Analysis Flight Dynamics Analysis Branch Code 595 (572) Dave Folta Bo Naasz Frank.
Comparative Assessment of Human Missions to Mars Damon F. Landau Ph. D. Preliminary Exam September 13, 2005.
Low-thrust trajectory design ASEN5050 Astrodynamics Jon Herman.
Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.
Dynamics of an Occulter Based Planet Finding Telescope Egemen Kolemen, N. Jeremy Kasdin Dept. of Mechanical and Aerospace Eng., Princeton University B.
Advanced method of virtual trajectories for the preliminary design of gravity-assist missions Sergey Trofimov Keldysh Institute of Applied Mathematics.
The Interplanetary Transport Network: Space Transportation Architecture for the 21st Century 5 May 2004 Shane Ross Everhart Lecture Series Control & Dynamical.
Prince William Composite Squadron Col M. T. McNeely Presentation for AGI Users Conference CIVIL AIR PATROL PRESENTS The CAP-STK Aerospace Education Program.
An insertion burn at local noon has the advantage that the spacecraft is kicked into a 11 resonant orbit, with an inexpensive recovery manoeuvre, if the.
Asteroid Tour Trajectory D. Hyland Nov 21, Voyage Concepts We sketch potential trajectories for our deep space vessel: –Initial voyage from LEO.
Inner Guides=Text Boundary Outer Guides=Inner Boundary Asteroid Redirect Mission and Human Exploration Michele Gates Human Exploration and Operations Mission.
Guidance for Hyperbolic Rendezvous Damon Landau April 30, 2005.
University of Paderborn Applied Mathematics Michael Dellnitz Albert Seifried Applied Mathematics University of Paderborn Energetically efficient formation.
Lunar CRater Observation and Sensing Satellite Project LCROSS Site Selection Workshop Oct , 2006 NASA/ARC, Mountain View, California LCROSS Orbital.
Unmanned Space Programs. What is the difference? Artificial Earth Satellite  A space vehicle built to orbit the earth and perform a specific function.
Jet Propulsion Laboratory California Institute of Technology National Aeronautics and Space Administration National Aeronautics and Space Administration.
Space Systems Bob Hall & John Carrico.
Low Energy Transfer Applications MWL - 1 JPL 2004 Summer Workshop on Advanced Topics in Astrodynamics Low Energy Transfers in the.
Two Interesting (to me!) Topics Neither topic is in Goldstein. Taken from the undergraduate text by Marion & Thornton. Topic 1: Orbital or Space Dynamics.
Low-Thrust Transfers from GEO to Earth-Moon Lagrange Point Orbits Andrew Abraham Moravian College, 2013.
NASA’s Goddard Space Flight Center LRO Operations Concept Richard Saylor Jr. HTSI/Code 444 August 16-17, 2005.
Mark Beckman - Flight DynamicsMB-1 Lunar Flight Dynamics Mark Beckman July 12, 2012.
SLS-RFM_14-18 Orbital Considerations For A Lunar Comm Relay
Earth, as viewed by the Voyager spacecraft. © 2010 Pearson Education, Inc. 7.1 Studying the Solar System Our goals for learning:  What does the solar.
The Solar System Chapter 6 COPY DOWN THE LEARNING GOALS ON PG SKIP 5 LINES BETWEEN EACH!
Eclipses 5/19/ c pgs IN: Which two planets do not have moons? Why not?
The InterPlanetary Superhighway and the Development of Space
Arrival time of halo coronal mass ejections In the vicinity of the Earth G. Michalek, N. Gopalswamy, A. Lara, and P.K. Manoharan A&A 423, (2004)
Presented to Kepler Pre-Launch Educator Workshop January 31, 2009 Shari Asplund Discovery and New Frontiers Programs Education and Public Outreach Manager.
Space Mission Design: Interplanetary Super Highway Hyerim Kim Jan. 12 th st SPACE Retreat.
Overview Problem Solution Advantages Disadvantages Conclusion.
Low Energy Transfer Applications MWL - 1 JPL 2004 Summer Workshop on Advanced Topics in Astrodynamics New Mission Concepts & Orbits.
ARO309 - Astronautics and Spacecraft Design
Formation Flight, Dynamics Josep Masdemont UPC 10/19/00JMS- 1 Formation Flight, Dynamics Josep Masdemont, UPC.
AAE450 Spring 2009 Low Thrust Spiral Transfer Maneuvers and Analysis [Andrew Damon] [Mission Ops] February 5,
Optimization of Preliminary Low- Thrust Trajectories From GEO- Energy Orbits To Earth-Moon, L 1, Lagrange Point Orbits Using Particle Swarm Optimization.
ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1.
Lunar Sample Return via the Interplanetary Supherhighway
SPECS 2004 Dynamics and Control Control modes: (1) Orbit insertion (2) Acquisition (3) On-station Determined by: mission requirements, mission geometry,
Periodic Orbit Approach ~100 km Orbiters (Saturn+Enceladus Gravity) Orbit Insertion Costs Study on the Stability of Science Orbits of Enceladus Nathan.
Mission Development: Putting It All Together ASEN 6008 Interplanetary Mission Design.
JIMO Team MeetingJune 17, 2004 Europa Orbiter Study Update Rodney L. Anderson Martin W. Lo.
FLY-BY ME TO THE MOON LESSONS LEARNED ON CLOSE ENCOUNTERS Ettore Perozzi Deimos Space 1.
Small Spacecraft Interplanetary Missions: The Art of Trajectory Design Mikhail Ovchinnikov Keldysh Institute of Applied Mathematics Maksim Shirobokov Keldysh.
上海天文台 Shanghai Astronomical Observatory CVN in Chang’e-3 lunar exploration mission ZHENG Weimin Shanghai Astronomical Observatory, Chinese.
Workshop on Science Associated with the Lunar Exploration Architecture - Earth Science Subcommittee Theme: A Lunar-Based Earth Observatory Science Observations.
Mark Beckman NASA/GSFC Code 595 August 16-17, 2005
Institute of Applied Astronomy,
Lunar Trajectories.
Set Oriented Numerical Methods for the
Future In-Space Operations (FISO) Telecon Colloquium
SLS-RFM_14-18 Orbital Considerations For A Lunar Comm Relay
MMS enters Phase 2b to study Magnetic Reconnection on Earth’s Dark Side On 9 February 2017, NASA’s Magnetospheric Multi-Scale (MMS) mission began a three-month.
Landing Site Weak Stability Boundary Transfer (WSB)
[Andrew Damon] [Mission Ops]
SPACE MANIFOLD DYNAMICS: THE PRAGMATIC POINT OF VIEW
Attitude, Lunar Transfer Phase
Three-Body Trajectory Model and Spiral Transfer Matching
Flight Dynamics Michael Mesarch Frank Vaughn Marco Concha 08/19/99
Probes A probe is an unmanned, unpiloted spacecraft carrying instruments intended for use in exploration of outer space or celestial bodies other than.
Lunar Descent Analysis
Autonomous Operations in Space
Try Lam Jennie R. Johannesen Theresa D. Kowalkowski
Solar Sail Trajectories and Orbit Phasing of Modular Spacecraft for Segmented Telescope Assembly about Sun-Earth L2 Gabriel Soto, Erik Gustafson, Dmitry.
Presentation transcript:

8/6/2002 AIAA/AAS Astrodynamics Specilaist Conference JPL Caltech Lunar Orbit Lunar Sample Return via the Interplanetary Supherhighway EL 1 Moon Earth Moon LL 2 Lander Separation Lander Orbiter EL 2 Lander Return LL 2 Stable Manifold Insertion Lander Return

Lunar Sample Return Mission MWL - 2 Martin Lo, Min-Kun Chung JPL Agenda Lunar Sample Return Mission Overview Baseline Mission Scenario –Lunar L 2 Case (LL 2 ) Mission Performance Comparison

Lunar Sample Return Mission MWL - 3 Martin Lo, Min-Kun Chung JPL Mission Overview Goal: Collect and Return Lunar Samples to Earth –Aitken Basin on Backside of Moon, (180°, -57°) Launch Combo, the Combined Flight System Communications Orbiter –Desire Continuous Communications Coverage Between Earth and Lander Module Lander/Return Module –Sample Collection in Sun, ~2 Weeks Available –Return to Earth (non-specific target)

Lunar Sample Return Mission MWL - 4 Martin Lo, Min-Kun Chung JPL Key Results Metric: Total  V of –Combo –Lander/Return Module –Communications Orbiter Trade Time for Total  V Best Case 1446 m/s Less than Conic Case Baseline 1020 m/s Less than Conic Case Case  T (days) Total  V (m/s) -Conic  V (m/s) LL LL EL Conic

Lunar Sample Return Mission MWL - 5 Martin Lo, Min-Kun Chung JPL

Lunar Sample Return Mission MWL - 6 Martin Lo, Min-Kun Chung JPL Key Concepts Used in the Paper Lunar L2 Halo Link Earth to Lunar Backside –Colombo (L1) –Farquhar: Halo Orbits Dynamical Systems Theory –Poincaré, Connelly, McGehee –Gomez, Jorba, Llibre, Martinez, Masdemont, Simó Hiten-Like Transfers –Belbruno, Miller –Lo, Ross –Koon, Lo, Marsden, Ross Heteroclinic Connection Theory –Barden, Howell –Koon, Lo, Marsden, Ross

Lunar Sample Return Mission MWL - 7 Martin Lo, Min-Kun Chung JPL JPL LTool Team  Martin LoSection 312  Task Manager  Larry RomansSection 335  Cognizant S/W Engineer (Marthematica Developer)  George HockneySection 367  S/W Architecture & Sys Engineer  Brian BardenSection 312  Trajectory Design & Algorithms  Min-Kun ChungSection 312  Astrodynamics Tools  James EvansSection 368  Infrastructure S/W, Visualization Tools

Lunar Sample Return Mission MWL - 8 Martin Lo, Min-Kun Chung JPL Case LL 2 : 1020 m/s Cheaper Than Conic LL1 LL2 MoonEarth EL2 EL1 Case  T (day) Total  V (m/s) LL LL EL Conic BASELINE CASE

Lunar Sample Return Mission MWL - 9 Martin Lo, Min-Kun Chung JPL Case LL 1 : 943 m/s Cheaper Than Conic Case  T (day) Total  V (m/s) LL LL EL Conic LL1 LL2 MoonEarth EL2 EL1

Lunar Sample Return Mission MWL - 10 Martin Lo, Min-Kun Chung JPL Case EL 1 : 1446 m/s Cheaper Than Conic Case  T (day) Total  V (m/s) LL LL EL Conic LL1 LL2 MoonEarth EL2 EL1

Lunar Sample Return Mission MWL - 11 Martin Lo, Min-Kun Chung JPL LL 2 Case: Direct Transfer to LL 2 Lissajous Orbit Lunar Transfer LL 2 Lissajous Orbit Lunar Landing Lander Return EL 1 Earth Moon EL 2 Lander Return

Lunar Sample Return Mission MWL - 12 Martin Lo, Min-Kun Chung JPL LL 2 Case: Trans-Lunar Phase Trans-Lunar Injection 3122 m/s at 6/14/09 Earth 6/14/90 Lander Return LL 1 LL 2 Moon LL 2 Insertion 570 m/s at 6/18/09 Lander Return Earth 11/7/90

Lunar Sample Return Mission MWL - 13 Martin Lo, Min-Kun Chung JPL LL 2 Stable Manifold Insertion LL 1 LL 2 Moon Trans-Lunar Orbit Lander Return Lander Orbit Orbiter Lander LL 2 Departure: 35 m/s at 7/7/09 Lander Touchdown: 2335 m/s at 7/17/09 Lander Return: 2424 m/s at 7/28/09 LL 2 Case: Lunar Phase

Lunar Sample Return Mission MWL - 14 Martin Lo, Min-Kun Chung JPL LL 2 Case: Earth Moon Rotating Frame EL 1 Earth Moon EL 2 Lander Return

Lunar Sample Return Mission MWL - 15 Martin Lo, Min-Kun Chung JPL Lander Return Earth Orbiter LL 2 LL 1 LL 2 Case: EME2000 Inertial Frame

Lunar Sample Return Mission MWL - 16 Martin Lo, Min-Kun Chung JPL Lander Return Earth Orbiter EL 2 LL 2 LL 1 LL 2 Case: Sun-Earth Rotating Frame

Lunar Sample Return Mission MWL - 17 Martin Lo, Min-Kun Chung JPL LL 2 Case: Mission Sequence &  V’s Mission Sequence Date (2009)  T (days) Combo  V (m/s) Lander  V (m/s) Orbiter  V (m/s) Translunar Injection6/ Manifold Insertion 6/ LL 2 Halo Arrival 6/2511 Lander LL 2 Departure 7/72335 Lander Landing 7/ Lander Liftoff 7/ Earth Return 11/7146 Navigation  V Total

Lunar Sample Return Mission MWL - 18 Martin Lo, Min-Kun Chung JPL Moon LL 1 LL 2 Heteroclinic Connection LL 1 Case: LL 2 via LL 1 Insert into LL 1 Stable Manifold Heteroclinic Connection for Comm. Orbiter Lunar Landing from LL 1 Moon LL 1 Lander Departs for Moon: 95 m/s Landing: 2330 m/s 8.5 days later

Lunar Sample Return Mission MWL - 19 Martin Lo, Min-Kun Chung JPL LL 1 Case: Mission Sequence &  V’s Mission Sequence Date (2009)  T (days) Combo  V (m/s) Lander  V (m/s) Orbiter  V (m/s) Translunar Injection6/ LL 1 Halo Insertion 6/ Orbiter LL 1 Departure 6/ Orbiter LL 2 Arrival 7/7280 Lander LL 1 Departure 7/ Lander Landing 7/ Lander Liftoff 7/ Earth Return 11/7151 Navigation  V Total LL 2 Case

Lunar Sample Return Mission MWL - 20 Martin Lo, Min-Kun Chung JPL EL 2 EL 1 Case: LL 2 via Earth L 1 EL 1 EL 1 LOI 60 m/s LL 1 LOI 13.2 m/s Reduce LL 2 LOI  V: Launch to EL 1 Fall to LL 2 Once There, Follows LL 2 Case Earth Launch 3193 m/s FAIR/DART Trajctory

Lunar Sample Return Mission MWL - 21 Martin Lo, Min-Kun Chung JPL EL 1 Case: Mission Sequence &  V’s Mission Sequence Date (2009)  T (days) Combo  V (m/s) Lander  V (m/s) Orbiter  V (m/s) Earth Launch5/30/ EL 1 Insertion 8/29/ LL 2 Halo Arrival 6/ Lander LL 2 Departure 7/ Lander Landing 7/ Lander Liftoff 7/ Earth Return 11/7553 Navigation  V Total Reduction by Order of Magnotide LL 2 Case

Lunar Sample Return Mission MWL - 22 Martin Lo, Min-Kun Chung JPL Conic Trans-Lunar Orbit Lander in 100-km Lunar Parking Orbit Orbiter in Highly Elliptical Orbit – 100x8700 km, 12 hr Period Conic Case (S. Williams, JPL)

Lunar Sample Return Mission MWL - 23 Martin Lo, Min-Kun Chung JPL Mission Sequence Date (2009)  T (days) Combo  V (m/s) Lander  V (m/s) Orbiter  V (m/s) Translunar Injection7/ Separation 7/171 Lunar Orbit Insertion 7/ Lander Apoapsis Burn 7/ Lander Landing 7/ Lander Liftoff 8/ Earth Return 8/823 Navigation  V Total Conic Case (S. Williams, JPL)

Lunar Sample Return Mission MWL - 24 Martin Lo, Min-Kun Chung JPL Libration Point Mission Lowers  V Saves Up to 1446 m/s! Provides Continuous Communication Trade  V for Time Case  T (days) Combo  V (m/s) Lander  V (m/s) Orbiter  V (m/s) Total  V (m/s) -Conic  V (m/s) LL LL EL Conic

Lunar Sample Return Mission MWL - 25 Martin Lo, Min-Kun Chung JPL END

Lunar Sample Return Mission MWL - 26 Martin Lo, Min-Kun Chung JPL Earth Moon LL 1 Lissajous Orbit LL 1 Stable Manifold LL 1 Case: LL 2 via LL 1 Insert into LL1 Stable Manifold Heteroclinic Connection for Comm. Orbiter Lunar Landing from LL1

Lunar Sample Return Mission MWL - 27 Martin Lo, Min-Kun Chung JPL Moon LL 1 LL 2 Heteroclinic Connection LL 1 Case: LL 2 via LL 1 Insert into LL1 Stable Manifold Heteroclinic Connection for Comm. Orbiter Lunar Landing from LL1

Lunar Sample Return Mission MWL - 28 Martin Lo, Min-Kun Chung JPL Moon LL 1 Lander Departs for Moon: 95 m/s Landing: 2330 m/s 8.5 days later LL 1 Case: LL 2 via LL 1 Insert into LL1 Stable Manifold Heteroclinic Connection for Comm. Orbiter Lunar Landing from LL1

Lunar Sample Return Mission MWL - 29 Martin Lo, Min-Kun Chung JPL Interplanetary Superhighway in the Earth’s Neighborhood Collection of Invariant Manifolds of Quasiperiodic Orbits in the Solar System –Coupled Three Body Systems EARTH EARTH L 2 HALO ORBIT MOON LUNAR L 1 HALO ORBIT LUNAR L 2 HALO ORBIT LUNAR L 1 GATEWAY

Lunar Sample Return Mission MWL - 30 Martin Lo, Min-Kun Chung JPL Mission Design with LTool Lissajous Orbits and Manifold Trans-Lunar Trajectory Lander Sample Collection in Sun Lander Insertion Trajectory Heteroclinic Connection from LL 1 to LL 2 Interplanetary Connection from EL 1 to LL 2 Lander Return Trajectory

Lunar Sample Return Mission MWL - 31 Martin Lo, Min-Kun Chung JPL References Barden, Howell, Formation Flying in the Vicinity of Libration Point Orbits, AAS , Monterey, CA, 2/98 Barden, Howell, Dynamical Issues Associated with Relative Configurations of Multiple Spacecraft Near the Sun-Earth/Moon L1 Point, AAS , Girdwood, Alaska, 8/99 Gomez, Masdemon, Simo, Lissajous Orbits Around Halo Orbits, AAS , Huntsville, Alabama, 2/97 Howell, Barden, Lo, Applications of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission, JAS 45(2), April 1997, Howell, Marchand, Lo, The Temporary Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems, AAS , Clearwater, FL, 1/2000 Koon, Lo, Marsden, Ross, Heteroclinic Connections between Lyapunov Orbits and Resonance Transitions in Celestial Mechanics, to appear in Chaos

Lunar Sample Return Mission MWL - 32 Martin Lo, Min-Kun Chung JPL References Koon, Lo, Marsden, Ross, The Genesis Trajectory and Heteroclinic Connections, AAS99-451, Girdwood, Alaska, August, 1999 Koon, Lo, Marsden, Ross, Shoot the Moon, AAS00-166, Clearwater, Florida, January, 2000 Lo, The InterPlanetary Superhighway and the Origins Program, IEEE Aerospace2002 Conference, Big Sky, MT, February, 2002 Lo et al., Genesis Mission Design, AIAA , Boston, MA, August, 1998 Serban, Koon, Lo, Marsden, Petzold, Ross, Wilson, Halo Orbit Correction Maneuvers Using Optimal Control, submitted to Automatica, April, 2000 Scheeres, Vinh, Dynamis and Control of Relative Motion in an Unstable Orbit, AIAA Paper , August, 2000