Chapter 4 Impulse and Momentum.

Slides:



Advertisements
Similar presentations
IMPULSE AND MOMENTUM The impulse F  t is a vector quantity equal in magnitude to the product of the force and the time interval in which it acts. Its.
Advertisements

Chapter 5 Momentum Ewen et al. 2005) Objective: Apply the law of conservation of momentum to both elastic and inelastic collisions of two objects. Apply.
Chapter 7 Linear Momentum.
Chapter 7 Impulse and Momentum. Impulse and momentum play important roles in sports.
Chapter 9: Impulse, Momentum, and Collisions  Up to now we have considered forces which have a constant value (except the spring) throughout the motion.
Momentum and Impulse.
1. Momentum: By Momentum, we mean “Inertia in Motion” or more specifically, the mass of an object multiplied by its velocity. Momentum = mass × velocity.
Conservation of Momentum
nfl football momentum Momentum is a commonly used term in sports. A team that has the momentum is on the move and is going to take some effort to stop.
Aim: What is the law of conservation of momentum? Do Now: A 20 kg object traveling at 20 m/s stops in 6 s. What is the change in momentum? Δp = mΔv Δp.
Chapter 7 Impulse and Momentum.
Newton’s Third Law of Motion
Conservation of Momentum. Conserved Total momentum of a system before and after an interaction remains constant Momentum before = Momentum After Two balls.
AP Physics I.D Impulse and Momentum. 7.1 Impulse-Momentum Theorem.
Ch. 8 Momentum and its conservation
Chapter 6 Preview Objectives Linear Momentum
Momentum and Impulse Vectorman productions present: A Nick enterprise: this product is intended for the serious physics student, if you are not a serious.
Momentum Chapter 6. Momentum ► Related to inertia, not the same. ► Symbol is p ► p=mv ► Units of kgm/s ► What is the momentum of a 75kg rock rolling at.
Momentum and Impulse Review 1.The velocity of a moving mass is called? ans: momentum 2.Force applied in a period of time is called? ans: impulse 3. The.
Momentum and Collisions
REVISION MOMENTUM. the product of an object's mass and its velocity a vector quantity with the same direction as the velocity of the object. MOMENTUM.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kg·m/s A quantity used in collisions So a small object.
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Momentum!!! Physics Mr. Padilla.
MOMENTUM the product of mass and velocity Units are kgm/s, or any mass velocity combo Example: Which has more momentum, a 8000-kg hippo trotting at 1.5.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse of a force is the product of the average force and.
Chapter 7 Impulse and Momentum. Impulse, J The impulse J of a force is the product of the average force and the time interval  t during which the force.
Momentum Introduction to Momentum. What is Momentum? The quantity of motion of a moving body Depends on mass and velocity Measured by multiplying mass.
Would you rather be hit by a tennis ball or a bowling ball?
Ch 7. Impulse and Momentum
THINGS YOU WANTED TO KNOW, BUT WERE AFRAID TO ASK. IMPULSE AND MOMENTUM.
Momentum Momentum is inertia in motion Momentum is inertia in motion What is Inertia? What is Inertia? …think Newton’s 1 st Law …think Newton’s 1 st Law.
The Laws A section in the chapter of the study of Dynamics of motion.
Momentum Physics Physics Definition : Linear momentum of an object of mass (m) moving with a velocity (v) is defined as the product of the mass.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
Momentum and Collisions Momentum and Impulse  The momentum of an object is the product of its mass and velocity: p=mv  Units of momentum: kg·m/s.
We will be playing Jeopardy today! Please come up with a team name and write it on the board above your team number.
Impulse & Momentum Physics 11.
Momentum Notes. Momentum Momentum ( ρ)= Mass x Velocity ρ = mv ρ = momentum (kg·m/s) m= mass (kg) v= velocity (m/s)
Momentum. The p = m = mass v = velocity Unit: Vector Direction of momentum is determined by the direction of the.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Objectives  Know the meaning of linear momentum.  Use Newton’s Second Law of Motion to derive the equation for linear momentum.  Understand the relationship.
Momentum Notes. Momentum Momentum ( ρ) – inertia in motion Mass x Velocity ρ = mv measured in kg·m/s.
Momentum Chapter 6. Momentum ► Related to inertia, not the same. ► Symbol is p ► p=mv ► Units of kgm/s 1. What is the momentum of a 75kg rock rolling.
Chapter 7 Impulse and Momentum
Would you rather be hit by a tennis ball or a bowling ball?
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Impulse and Momentum. Terminology Impulse: FΔt, or the product of the average force on object and the time interval over which it acts (measures in Newton-seconds)
Bell Ringer After reading the article Does slamming on the brakes save your brake pads? Do you believe this saves gas?
Ying Yi PhD Chapter 7 Impulse and Momentum 1 PHYS HCC.
Chapter 6. When objects collide their motion changes and this is the result of a concept called momentum. Momentum = mass x velocity p = mv kgm/s or Ns.
UNIT 7 MOMENTUM & COLLISIONS. MOMENTUM The linear momentum of an object of mass m moving with a velocity v is defined as the product of the mass and the.
Chapter 8 Momentum, Impulse and Collisions
Momentum & Impulse For clickers.
Impulse and Momentum.
Newton’s laws of motion
CONSERVATION OF LINEAR MOMENTUM
Momentum Physics.
Linear Momentum Impulse & Collisions.
Momentum Review Energy, Intro Momentum Impulse-Momentum
Chapter 5 Momentum.
momentum = mass  velocity
Chapter 7 Impulse and Momentum.
IMPULSE AND MOMENTUM When ever things collide, I’ve heard,
Chapter 7 Impulse and Momentum.
Unit 7 &.
Vectorman productions present: A Nick enterprise:
Presentation transcript:

Chapter 4 Impulse and Momentum

Chapter 4 Impulse and Momentum

Momentum = mass × velocity By Momentum, we mean “Inertia in Motion” or more specifically, the mass of an object multiplied by its velocity. Momentum = mass × velocity or in shorthand notation, Momentum = m × v P = m × v When direction is not an important factor, we can say Momentum = mass × speed S.I Unit of Momentum : Kg-m/sec or N-sec

Impulse = Change in Momentum Impulse Changes Momentum: The greater the impulse exerted on some thing, the greater the change in momentum. The exact relationship is, Impulse = Change in Momentum or in shorthand notation, Ft = Δ(mv) Where Δ is the symbol for “change in”

P1(initial) + P2(initial) = P1(final) +P2(final) Law of Conservation of Momentum If no net external force acts on a system, the total linear momentum of the system cannot change. Or It can be stated that The sum of a system's initial momentum is equal to the sum of a system's final momentum. The law of conservation of momentum can be mathematically expressed as Total momentum before collision = Total momentum after collision P1(initial) + P2(initial) = P1(final) +P2(final)

Impulse = Change in Momentum Impulse Changes Momentum: The greater the impulse exerted on some thing, the greater the change in momentum. The exact relationship is, Impulse = Change in Momentum or in shorthand notation, Ft = Δ(mv) Where Δ is the symbol for “change in”

Example An average force of 300 N acts for a time of 0.05 s on a golf ball. What is the magnitude of the impulse acting on the ball? Solution Given data:

Example A bowling ball of mass 5kg travels at 2m/s and a tennis ball with mass of 150g. Can both balls have the same momentum? If yes at what speed must the tennis ball travel to have same momentum? solution V =2m/s Given data: m = 150g M = 5kg

Example A baseball of mass 0.15 kg has an initial velocity 0f -20 m/s (moving to the left) as it approaches a bat. It is hit straight back to the right and leaves the bat with a final velocity of +40 m/s. (a) Determine the impulse applied to the ball by the bat. (b) Assume that the time of contact is , find the average force exerted on the ball by the bat. (c) How much is the impulse exerted by the ball on the bat?

(2) Apply the equation that defines impulse Solution (1) Apply the impulse-momentum theorem (2) Apply the equation that defines impulse (3) Apply Newton’s third law of action and reaction and get Impulse exerted on the bat by the ball equals -9 kg m/s. The negative sign indicates a direction to the left of the origin of coordinate system.

P1(initial) + P2(initial) = P1(final) +P2(final) Law of Conservation of Momentum If no net external force acts on a system, the total linear momentum of the system cannot change. Or It can be stated that The sum of a system's initial momentum is equal to the sum of a system's final momentum. The law of conservation of momentum can be mathematically expressed as Total momentum before collision = Total momentum after collision P1(initial) + P2(initial) = P1(final) +P2(final)

Applications Recoil of a gun: why a rifle recoils when a bullet is fired? A 10 g bullet is fired from a 3 kg rifle with speed of 500 m/s. What is (a) the initial momentum of the system (bullet and rifle)? And (b) the recoil speed of the rifle? b=bullet r=rifle i=initial f=final

A 10 g bullet is fired from a 3 kg rifle with speed of 500 m/s A 10 g bullet is fired from a 3 kg rifle with speed of 500 m/s. What is (a) the initial momentum of the system (bullet and rifle)? And (b) the recoil speed of the rifle? m1 = 3 kg m2 = 10 gm = 0.01 kg v1i = 0 m/sec (before firing) v2i = 0 m/sec (before firing) v2f = 500 m/sec (after firing) P = ? v1f = ? (after firing)

Collision Elastic Collision P1i + P2i = P1f + P2f Is a collision in which the total kinetic energy of the collided objects after collision equals the total kinetic energy before collision. P1i + P2i = P1f + P2f K1i + K2i = K1f + K2f The collided object bounce a part and return to their original shape without a permanent deformation

Inelastic Collision - Is one in which the total kinetic energy of the collided objects after collision is not equal to the total kinetic energy before collision. The two object experience a permanent deformation in their original shape P1i + P2i = P1f + P2f K1i + K2i ≠ K1f + K2f - In completely inelastic collision, the two objects coupled and move as a one object after collision In both collisions, conservation of momentum is applied

Example on Elastic collision A ball of mass 0.6 kg traveling at 9 m/s to the right collides head on collision with a second ball of mass 0.3 kg traveling at 8 m/s to the left. After the collision, the heavier ball is traveling at 2.33 m/s to the left. What is the velocity of the lighter ball after the collision? solution Given Data

Example about completely Inelastic Collision A kg railroad car traveling at 8 m/s to the east as shown in the drawing below is collided with another car of the same mass and initially at rest and couple with it. What is the velocity of the coupled system of cars after the collision?