6.1 – Graphing Systems of Equations

Slides:



Advertisements
Similar presentations
Solving Linear Systems by Graphing
Advertisements

Question: Find the equation of a line that is parallel to the equation: 3x + 2y = 18.
SOLUTION EXAMPLE 1 A linear system with no solution Show that the linear system has no solution. 3x + 2y = 10 Equation 1 3x + 2y = 2 Equation 2 Graph the.
4.1 System of linear Equations Solving graphically Solving by substitution Solving by addition.
Solving System of Equations Using Graphing
Objective - To graph linear equations using x-y charts. One Variable Equations Two Variable Equations 2x - 3 = x = 14 x = 7 One Solution.
6.8 –Systems of Inequalities. Just like systems of equations, but do the inequality part!
Math 71A 3.1 – Systems of Linear Equations in Two Variables 1.
Solving Systems of Linear Equations by Graphing
Slide Systems of Linear Equations A system of linear equations consists two or more linear equations.
Warm-Up 5 minutes 1) On the coordinate plane, graph two lines that will never intersect. 2) On the coordinate plane, graph two lines that intersect at.
Topics: Topic 1: Solving Linear Equations Topic 2: Solving Quadratic Equations Topic 3: Solving Proportions involving linear and quadratic functions. Topic.
Systems Jeopardy PotpourriEliminationSubstitutionGraphing.
13-2 Objective: Determine whether a system of equations has one solution, no solution, or an infinite number of solutions.
Class 5: Question 1 Which of the following systems of equations can be represented by the graph below?
5.4 – Solving Compound Inequalities. Ex. Solve and graph the solution.
Math /4.2/4.3 – Solving Systems of Linear Equations 1.
Graph y = 2 3
3.1 System of Equations Solve by graphing. Ex 1) x + y = 3 5x – y = -27 Which one is the solution of this system? (1,2) or (-4,7) *Check (1,2)Check (-4,7)
Practice 1.) Solve for y : 4x + 2y = -8 2.) Solve for y: 3x – 5y = 10 3.) Graph the equation: 3x – 2y = 5 x y O
Monday, March 23 Solve system of linear equations by graphing. Check consistency and dependency of system of equations by graphing.
Chapter 13 Section 2 Solutions of Systems of Equations.
Solving Linear Inequalities Lesson 5.5 linear inequality: _________________________________ ________________________________________________ solution of.
Solving Open Sentences Involving Absolute Value
Complete the DO NOW in your packets
3.1 “Solving Linear Systems with Graphing”
Warm-up 4-1. x – y = 33x + y = 52y = 6 – x x + y = 5x – 2y = 43x – 2y = 6 Graphs:
Solving a System of Equations in Two Variables By Graphing Chapter 8.1.
Y = 3x x + y = -1  (-1, 1) is where the two lines intersect.  This point is a point on both lines.  Therefore, if we substitute -1 in for.
Solving Systems of Equations
3.1 Graphing Systems of Equations Objective – To be able to solve and graph systems of linear equations. State Standard – 2.0 Students solve systems of.
Solving Systems By Graphing. Warm – Up! 1. What are the 2 forms that equations can be in? 2. Graph the following two lines and give their x-intercept.
Systems of Equations. OBJECTIVES To understand what a system of equations is. Be able to solve a system of equations from graphing, substitution, or elimination.
Chapter 5 Solving Systems of Linear Equations. Determine Whether a Given Ordered Pair is a Solution of a System Ex. 1.
PLOT ANY POINT Solutions To Linear Equations.
7.4 Consistent and Inconsistent Systems
Stand Quietly.
EXAMPLE Determine whether the given point is a solution of the following system. point: (– 3, 1) system: x – y = – 4 2x + 10y = 4 Plug.
1-5 Writing Equations of Parallel and Perpendicular Lines
3.3 – Solving Systems of Inequalities by Graphing
Solving Systems of Equations by Elimination2
8.7Systems of Linear Equations – Part 1
Linear Systems November 28, 2016.
Warm-Up Graph Solve for y: Graph line #2.
7.1 Solving Linear Systems by Graphing
7.1 System of Equations Solve by graphing.
Solutions to Systems of Equations
3.1 Notes: Solving Systems of Equations
Graph the equation..
Systems of Equations Solving by Graphing.
6-1 Solving Systems by Graphing
SECTION 6-1 : SOLVING SYSTEMS WITH GRAPHING
Solve Special Types of Linear Systems
5.1 Solving Systems of Equations by Graphing
that ordered pair is the one solution.
SYSTEMS.
Slope-Point Form of the Equation for a Linear Function
Graphing Systems of Equations
Solving for x and y when you have two equations
Warm-Up 1) Sketch a graph of two lines that will never intersect.
Solutions of Linear Functions
Chapter 6 Vocabulary (6-1)
Systems of Linear Equations: An Introduction
2-3 Equations With Variables on Both Sides
1.2 Solving Linear Systems by Graphing
Objective: Students will solve systems by graphing
Chapter 9 Lesson 3 Pg. 699 Solving Systems of Equations by Graphing
Where do these graphs intersect
3.1 Solving Linear Systems by Graphing
Chapter 9 Lesson 3 Pg. 699 Solving Systems of Equations by Graphing
Presentation transcript:

6.1 – Graphing Systems of Equations

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions.

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 2y = -2x – 4 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 2y = -2x – 4 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 2y = -2x – 4 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 2y = -2x – 4 2 2 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. 2y = -2x – 4 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. 2y = -2x – 4 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. 2y = -2x – 4 2 2 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. y = -x – 2 y = -x + 1 y = x – 3 y = -x – 2

Ex. 1 Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions. a. y = -x + 1 y = x – 3 One Sol. b. y = -x + 1 y = -x – 2 No Sol. c. y = -x – 2 Infinite Sol. y = -x + 1 y = x – 3 y = -x – 2

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1

Ex. 2 Graph each system of equations Ex. 2 Graph each system of equations. Determine if the system has no, one, or infinitely many solutions. If it has one solutions, name it. a. y = 2x – 1 m = 2, b = -1 y = -2x – 1 m = -2, b = -1 One sol. @ (0,-1)

b. 2x + 3y = 6 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12 -6y = 4x – 12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12 -6y = 4x – 12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12 -6y = 4x – 12

b. 2x + 3y = 6 3y = -2x + 6 y = -⅔x + 2 m = -2 , b = 2 3 -4x – 6y = -12 -6y = 4x – 12 Same line, therefore infinite sol.

c. 2x + y = 1 y = -2x – 1

c. 2x + y = 1 y = -2x + 1 m = -2, b = 1 y = -2x – 1 m = -2, b = -1 Parallel lines, therefore no sol.