Wireless Communication Systems

Slides:



Advertisements
Similar presentations
Communication Systems
Advertisements

Networks & Components Discuss the components required for successful communications Explain the purpose of communications software Identify various sending.
1 Cognitive Radio Networks Zhu Jieming Group Presentaion Aug. 29, 2011.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e Chapter 14 Wireless Networking Technologies.
Wireless Network Taxonomy Wireless communication includes a wide range of network types and sizes. Government regulations that make specific ranges of.
CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5 th Edition) Tracy Bradley Maples, Ph.D. Computer.
for WAN (WiMax). What is WiMax? Acronym for Worldwide Interoperability for Microwave Access It’s the IEEE standard, first introduced in 2001, for.
Computers Are Your Future © 2006 Prentice-Hall, Inc.
Sep 08, 2005CS477: Analog and Digital Communications1 Example Systems, Signals Analog and Digital Communications Autumn
Introduction Chapter 1. Wireless Comes of Age Guglielmo Marconi invented the wireless telegraph in 1896 Communication by encoding alphanumeric characters.
1 Summary of SDR Analog radio systems are being replaced by digital radio systems for various radio applications. SDR technology aims to take advantage.
EE 104: Introduction to Communications Professor Andrea Goldsmith.
Fundamental of wireless network.  Heinrich Hertz discovered and first produced radio waves in 1888 and by 1894 the modern way to send a message over.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. © The McGraw-Hill Companies, Inc. Wireless Network Technologies Asst. Prof.
1 Cellular communications Cellular communications BASIC TELECOMMUNICATIONS.
CHAPTER OVERVIEW SECTION 7.1 – Connectivity: The Business Value of a Networked World Overview of a Connected World Benefits of a Connected World Challenges.
Communication systems Dr. Bahawodin Baha School of Engineering University of Brighton, UK July 2007.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Introduction Chapter 1.
Lector: Aliyev H.U. Lecture №15: Telecommun ication network software design multimedia services. TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES THE DEPARTMENT.
WiMAX, meaning Worldwide Interoperability for Microwave Access Emerging technology that provides wireless transmission of data using a variety of transmission.
5G MOBILE TECHNOLOGY.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, All Rights Reserved BUSINESS PLUG-IN B21 Mobile Technology.
1 Spectrum Sharing in OFDM-Based Cognitive Radio Networks C. Rosenberg This work was done in collaboration with Dr. L. Le, Profs. P. Mitran & A. Girard.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
BY NEHA CHOUDHARY ASST. PROFFESSOR DEPT. OF CSE/IT LHST-A.
Challenges in the Migration to 4G Mobile Systems Suk Yu Hui and Kai Hau Yeung City university of Hong Kong Presenter: Shuai Peng
1 Mobile ad hoc networking with a view of 4G wireless: Imperatives and challenges Myungchul Kim Tel:
Final Exam n Work 5 of 7 pages n 2-3 pages will be from the Fall ‘99 final n 85-90% Notes 10-15% Readings n Scheduled Date Wednesday, 3 May,
Cognitive Radio Networks
Wireless Transmission and Services Chapter 9. Objectives Associate electromagnetic waves at different points on the wireless spectrum with their wireless.
4G Mobile Communications. MOBILE SYSTEM GENERATION First Generation (1G) Mobile System:  The introduction of cellular systems in the late 1970s and early.
A PRESENTATION ON “Wireless Networks”
1 Mobile ad hoc networking with a view of 4G wireless: Imperatives and challenges Myungchul Kim Tel:
Chapter 4 Telecommunications and Networking The McGraw-Hill Companies, Inc All rights reserved. Irwin/McGraw-Hill.
Professor Andrea Goldsmith
Wireless Telecommunications Networks personal area network (PAN) A wireless telecommunications network for device-to-device connections within a very short.
Ch 16. Wireless WANs Cellular Telephony Designed to provide communication between two “moving” units – To track moving units (mobile station; MS),
Professor Andrea Goldsmith
Static Spectrum Allocation
Applications of Wireless Communication Student Presentations and Research Papers Wireless Communication Technologies Wireless Networking and Mobile IP.
Presented by: Gurpreet Singh Assistant Professor Department of School of Computing and Engineering Galgotias University Cellular Communication.
Computers Are Your Future © 2008 Prentice-Hall, Inc.
Wireless Networks Instructor: Fatima Naseem Computer Engineering Department, University of Engineering and Technology, Taxila.
Wireless Communications Outline Introduction History System Overview Signals and Propagation Noise and Fading Modulation Multiple Access Design of Cellular.
Objective This presentation covers the Generation of Telecom Network Evolution. Basically the presentation aims on the evolution from 1G to 4G and some.
WHY WIRELESS COMMUNICATION?  Freedom from wires.  No bunch of wires running from here and there.  “Auto Magical” instantaneous communication without.
Chapter 9 Communications and Networks McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.
Introduction to Communications. Outline Communication Systems Today Future Systems Design Challenges.
Your Interactive Guide to the Digital World Discovering Computers 2012 Chapter 9 Networks and Communications.
Unit 4 Cellular Telephony
 Abbreviation of fourth generation wireless technology  It will provide a comprehensive IP solution where voice, data and multimedia can be given to.
TECHNICAL SEMINAR S V Suresh 08731A1254 By. 1 st GENERATION:  Introduced in 1980  Analog cellular mobile,Data speed 2.4kbps  1G mobiles- AMPS,NMT,TACS.
Wireless Communications. Outline Communication Systems Wireless Communications Current Wireless Systems –Cellular systems –Wireless LANs –Satellite Systems.
Personal Communication Services & WiFi
 Wireless System
5 G.
Seminar on 4G wireless technology
5G WIRELESS Technology.
5G MOBILE TECHNOLOGY TECHNICAL SEMINAR
“An Eye View On the Future Generation Of Phones”
Wired and wireless Frequency spectrum
4G-WIRELESS NETWORKS PREPARED BY: PARTH LATHIGARA(07BEC037)
Wireless System.
Digital Communications
Cognitive Radio Based 5G Wireless Networks
Cognitive Radio Networks
An overview of the IEEE Standard
CS 6710 Spring 2010 Rajmohan Rajaraman
Wireless Networks Instructor: Baruch Awerbuch, TA: Herb Rubens,
Presentation transcript:

Wireless Communication Systems Background of Wireless Communication Wireless Communication Technology Wireless Networking and Mobile IP Wireless Local Area Networks Wireless Personal Area Networks Wireless Metropolitan Area Networks Wireless Wide Area Networks Wireless Communication Systems

Overview Wireless LANs Paging Systems Cellular systems Communication Systems Wireless Communications Current Wireless Systems Wireless LANs Paging Systems Cellular systems Satellite Systems Bluetooth Design challenges 4G Systems Cognitive Radios

Communication Systems Provide electronic exchange of multimedia Data, Voice, Video, Music, Email, Web pages, etc. Communication Systems of today are used for Radio, TV broadcasting, Data and Public Switched Telephone Network (voice, fax, modem) Cellular Phones Computer networks (LANs, WANs, and the Internet) Satellite systems (pagers, voice/data, movie broadcasts) Bluetooth (Cable replacement)

Block diagram of a Communication Systems

Wireless Communications Multimedia wireless Communications at any Time and Anywhere Brief history Ancient Systems: Smoke Signals, Carrier Pigeons Radio invented in the 1880s by Marconi Many sophisticated military radio systems were developed during and after WW2 Cellular has enjoyed exponential growth since 1988, with more than 2 billion users worldwide today Ignited the recent wireless revolution, 1980-2003 Ubiquitous

Current Wireless Systems Cellular systems Wireless LANs Satellite Systems Paging Systems Bluetooth Ultra Wide Band Systems Zigbee

Wireless Systems: Range Comparison Satellite Links SW Radio MW FM Mobile Telephony WLANs Blueooth 1,000 Km 100 Km 10 Km 1 Km 100 m 10 m 1 m Q1. Suggest any system whose range of communication is more than that of satellite links? A: Command centers on Earth have traditionally helped space crews to resolve their problems. But a signal from Earth would take 40 minute to reach Mars, when decisions may have to be taken in seconds. Speed of light is the maximum that one can achieve for communication. http://mars.jpl.nasa.gov/MPF/rovercom/closing.html Q2. Describe any system whose range of communication is shorter than Infrared communication links? A: http://www.furukawa.co.jp/english/what/2009/comm_090323.htm Q3. Describe why communication range increase and decreases on logarithm scale? A: http://en.wikipedia.org/wiki/Decibel , http://www.bb-elec.com/tech_articles/WP33_10commandments_wireless_comm.asp

Cellular Systems: Reuse channels to maximize capacity Geographic region divided into cells Frequencies/timeslots/codes reused at spatially-separated locations. Co-channel interference between same color cells. Base stations/MTSOs coordinate handoff and control functions Shrinking cell size increases capacity, as well as networking burden BASE STATION MTSO

Type of Cells Global Satellite Suburban Urban In-Building Picocell Macrocell Microcell Urban In-Building Picocell Global Suburban Basic Terminal PDA Terminal Audio/Visual Terminal

Type of Cells Cell radii can be vary from 10’s of meters in buildings to 100’s of meters in the cities, up to several km’s in the countryside. Macrocells, provide overall area coverage Microcells, focus on slow moving subscribers moving between buildings. Picocells, focus on the halls of a theater, or exhibition centre.

Cellular Phone Networks Taxila BS BS Internet Lahore MTSO MTSO PSTN BS

The Wireless Revolution Cellular is the fastest growing sector of communication industry (exponential growth since 1982, with over 2 billion users worldwide today) Three generations of wireless First Generation (1G): Analog 25 or 30 KHz FM, voice only, mostly vehicular communication Second Generation (2G): Narrowband TDMA and CDMA, voice and low bit-rate data, portable units. 2.5G increased data transmission capabilities Third Generation (3G): Wideband TDMA and CDMA, voice and high bit-rate data, portable units

Wireless Local Area Networks (WLANs) 1011 01011011 0101 Access Point WLANs connect “local” computers (100m range) Breaks data into packets Channel access is shared (random access) Backbone Internet provides best-effort service Poor performance in some apps (e.g. video)

Wireless LAN Standards 802.11b (Current Generation) Standard for 2.4GHz ISM band (80 MHz) Frequency hopped spread spectrum 1.6-10 Mbps, 500 ft range 802.11a (Emerging Generation) Standard for 5GHz NII band (300 MHz) OFDM with time division 20-70 Mbps, variable range Similar to HiperLAN in Europe 802.11g (New Standard) Standard in 2.4 GHz and 5 GHz bands OFDM Speeds up to 54 Mbps Since 2008, all WLAN Cards have all 3 standards

Satellite Systems Cover very large areas Different orbit heights GEOs (39000 Km) LEOs (2000 Km) Optimized for one-way transmission Radio (XM, DAB) and movie (SatTV) broadcasting Most two-way systems struggling or bankrupt Expensive alternative to terrestrial system A few ambitious systems on the horizon

Paging Systems Broad coverage for short messaging Message broadcast from all base stations Simple terminals Optimized for 1-way transmission Answer-back hard Overtaken by cellular

Bluetooth Cable replacement RF technology (low cost) Short range (10m, extendable to 100m) 2.4 GHz band (crowded) 1 Data (700 Kbps) and 3 voice channels Widely supported by telecommunications, PC, and consumer electronics companies Few applications beyond cable replacement

Wireless Comm. Design Challenges Hardware Design Precise components Small, lightweight, low power Cheap High frequency operations System Design Converting and transferring information High data rates Robust to noise and interference Supports many users Network Design Connectivity and high speed Energy and delay constrains

4G Wireless Communication Systems Evolution to 4G wireless communication systems 4G: New paradigm shift from technology centric to user centric 4G: Integrated All-IP Architecture Efficient spectrum sharing concept in 4G wireless networks

Evolution towards to 4G B. Walke, IEEE 802 System: Protocol, Multihop mesh/relaying, Performance and Spectrum Coexistence, John Wiley and Sons, January 2007

The growth of number of mobile subscribers M.A. Uusitalo, “ The Wireless World Research Forum - Global Vision of Wireless World,” IWCT2005, Oulu, Finland, June 2005.

Why mobile subscribers are increasing ? Movement from the Personal Computing Age (one computing device per person) to Ubiquitous Computing Age (several platforms at user’s disposal whenever and wherever needed) The convergence of media Numerous demands of multimedia applications arose from huge number of personal wireless devices, which are small, cheap, more convenient and more powerful.

Road map of wireless communication systems L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

Key Concept of 4G Global wireless communication system All-IP based seamless connectivity 4G is foreseen as an integrator of all existing and future wireless and wired networks, both terrestrial and satellite. 4G is not a new system design from scratch but 4G is a concept of integration and convergence

4G systems will deliver All digital all-IP communication End-to-end QoS guarantees Efficient spectrum sharing and dynamic spectrum allocation Diversified radio access (e.g. cellular, WLAN, ad hoc networks) Adaptive multimode user terminals (cognitive approach) Seamless and transparent user roaming with fully support of various handovers.

4G systems will deliver Support for huge multimedia traffic Integration of navigation and communication system in order to offer a variety of location/situation/context aware service Increased level of security Increased personalization Quickly deployable user services (anytime, anywhere, and from any device) in cost effective manner

All-IP based 4G network RAN - Radio Access Network: The portion of a mobile phone network that relates to the transmission or radio communications between the terminal device and the network base station. L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

Research Challenge in Future Wireless Communication Systems Crucial issues needed to be investigated are User terminals issue Mobile Services issue Access network issue Communication issue Spectrum efficiency and channel capacity Provisioning of ubiquitous coverage Cost-effective solution for high data rates Increased bandwidth usability Efficient spectrum allocation by using cognitive approach

The Spectrum and Its Management Most governments consider the electromagnetic spectrum to be a public resource. It is usually allocated by a governmental organization (FCC, CRTC, ETSI, ARIB, etc.) that defines the spectrum management policy. Most of the spectrum is currently licensed to users to further the public good, e.g., radio, television, etc. Examples of licensing TV channels, radio, Cellular service, Unlicensed “free for all”, subject to some constraints (e.g., 900 Mhz cordless phones, 2.4 Ghz wireless WiFi). Common belief: we are running out of usable radio frequencies. Is that true?

Current Spectrum Management Policy Fixed allocation Rigid requirements on how to use Little sharing

Spectrum Usage in Space, Time, & Frequency Actual measurements by the FCC have shown that many licensed spectrum bands are unused most of the time. In NYC, spectrum occupancy is only 13% between 30 MHZ – 3.0 GHz.

Spectrum Usage Good quality spectrum is under-utilized. Hence the problem is more a spectrum management policy issue than a physical scarcity. The problem is begging for a solution based on dynamic spectrum management or access. There are many possibilities. Cognitive Radio is a synonym of dynamic spectrum access.

Dynamic Spectrum Sharing There are 3 ways to share the spectrum dynamically Dynamic Exclusive Access: extension to the current licensing policy. Flexible licensing. An improvement but not “fast” enough. Open Sharing Model: horizontal sharing, a generalization of the unlicensed band policy. All users/nodes have equal regulatory status. Based on the huge success of WiFi and other technologies working in the ISM band. Hierarchical Access Model: vertical sharing. All users do not have equal regulatory status (i.e., primary users and secondary users). Secondary users can opportunistically access the spectrum as long as it does not affect the primary users’ performance. Allows for prioritized spectrum sharing provided no harmful interference caused to primary users.

Harmful Interference Ultimately depends on the application. What is harmful interference? Ultimately depends on the application. There are generally two broad approaches to avoid harmful interference: Interference avoidance (spectrum overlay) Interference control (spectrum underlay) Of course they can be combined (overlay) (underlay)

Spectrum Overlay: Interference Avoidance Spectrum overlay approach impose restrictions on when and where the secondary users may transmit. Secondary users have to identify and exploit the spectrum holes defined in space, time, and frequency. Compatible with the existing spectrum allocation –legacy systems can continue to operate without being affected by the secondary users. Regulatory policies define basic etiquettes for secondary users to ensure compatibility with legacy systems. In principle, interference avoidance involves only two steps: Look for holes in spectrum/time. Transmit only in those bands at those times. Sounds a lot easier than it is. Detection of spectral holes is difficult due to the large range of potential modulation/coding schemes: careful measurements based on actual primary signal statistics and signatures is needed. Hidden terminal problem: we have to protect the primary receivers (but where are they?). Fast detection time needed.

How to Use frequency gaps? Suppose that after some sophisticated signal processing, we determine that spectrum occupancy is: How do we use these (non-contiguous) holes? OFDM based approach solves the problem naturally. OFDM has the advantages that It is low complexity (FFT and IFFT based) Can be naturally adjusted to fit almost any configuration of spectral holes. Is growing in popularity (802.11a, 802.16, 802.22)

Spectrum Underlay: Interference Control Interference avoidance is worst-case design In practice, this may be too “soft” and overly limit throughput of secondary users. Spectrum underlay approach constraints the transmission power of secondary users so that they operate below the interference temperature limit of primary users (i.e., the receivers). Interference temperature introduces new opportunities at a cost: Additional difficulties Secondary user needs to measure/know temp. at primary receivers. Secondary measurements Feedback from primary Treats interference as noise.

Spectrum Opportunity Channel is available at A (tx) if no primary rx nearby. Channel is available at B (rx) if no primary tx nearby. Channel is an opportunity if available at both A and B.

A Definition of Cognitive Radio (CR) A cognitive radio is an unlicensed communication system that is aware of its environment learns from its environment adapts to the statistical variations of its environment and uses these to achieve reliable communication and spectral efficiency by employing spectral holes or opportunities and does not generate harmful interference to the incumbents.  Cognitive Radios will be complex devices.

Some Examples Two examples of star networks with cognitive features: IEEE 802.16h (WiMAX) provides extensions to support unlicensed co-existence IEEE 802.22 is an explicit cognitive WRAN that will exploit vacant TV broadcast bands TV Transmitter WRAN Base Station : CPE : WRAN Base Station Typical ~33km Max. 100km

A little more about IEEE 802.22 IEEE 802.22 has the following interesting characteristics: Has a complex architecture to detect primary users. Follows the spectrum overlay approach (avoids interfering with primary users altogether) Is OFDM based

Spectrum sharing of cognitive radios Horizontal Spectrum Sharing: Sharing of spectrum between users of equal regulatory spectrum access rights Vertical Spectrum Sharing: Sharing of spectrum between users of different regulatory spectrum access rights Overlay Spectrum Sharing: L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

Emerging paradigm of cognitive network L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

IEEE 802.21 framework of Multimedia Independent Handover- Network Network controlled handover http://tools.ietf.org/html/draft-ohba-802dot21-basic-schema-00 http://pong.inescporto.pt/~apinho/ L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

IEEE 802.21 framework of Multimedia Independent Handover - User L.M. Gavrilovska and V. M. Atanasovski, “Interoperability in future wireless communications system: A roadmap to 4G,” Microwave Review, June 2007

4G Summary The 4G paradigm is already on the road. 4G wireless system provide high speed, high capacity, low cost per bits. 4G is IP-based services for broadband multimedia. Concept of 4G is all about an integrated, global network based on open system approach. 4G wireless systems utilize spectrum efficiently via cognitive approach, and optimize the choice of radio access technology. Cognitive radio and networking will become the key in reconfigurable wireless system.

Network Simulation Platforms NS-3 http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial-slides.ppt OMNeT++ 4.0 http://www.omnest.com/webdemo/ide/demo.html

Q&A ?

Assignment #3 Answer the questions given on Slide No. 7 Send your assignments in Word Document Format to adeel@uettaxila.edu.pk or adeel.akram@gmail.com Last date of submission of assignment is 14th April 2009.