Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair.

Slides:



Advertisements
Similar presentations
Greenhouse Gases and Climate Change: Global Changes and Local Impacts Anthony J. Broccoli Director, Center for Environmental Prediction Department of Environmental.
Advertisements

Jeffery Spooner (Climate Branch Head) Meteorological Service, Jamaica International Day for Biological Diversity: Biodiversity and Climate Change 22 May.
Global warming: temperature and precipitation observations and predictions.
1 Climate Change Science Kathryn Parker U.S. Environmental Protection Agency Rocky Mountain National Park March 21, 2007 July 1932July 1988 Glacier National.
Climate Change Impacts in the United States Third National Climate Assessment [Name] [Date] Climate Trends.
3. Climate Change 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process.
Outline Further Reading: Detailed Notes Posted on Class Web Sites Natural Environments: The Atmosphere GE 101 – Spring 2007 Boston University Myneni L29:
Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report SPM accepted February 1st 2007 in Paris.
Climatic changes in the last 200 years (Ch. 17 & 18) 1. Is it warming? --climate proxy info (recap) -- info from historical & instrumental records 2. What.
Outline Further Reading: Detailed Notes Posted on Class Web Sites Natural Environments: The Atmosphere GE 101 – Spring 2006 Boston University Myneni L28:
Your Name Your Title Your Organization (Line #1) Your Organization (Line #2) Global warming.: Matthieu BERCHER, Master M.I.G.S., University of Burgundy,
What role does the Ocean play in Global Climate Change?
May 2007 vegetation Kevin E Trenberth NCAR Kevin E Trenberth NCAR Weather and climate in the 21 st Century: What do we know? What don’t we know?
Protecting our Health from Climate Change: a Training Course for Public Health Professionals Chapter 2: Weather, Climate, Climate Variability, and Climate.
The Science of Climate Change - Overview
Rising Temperatures. Various Temperature Reconstructions from
Anthropogenic Climate Change The Greenhouse Effect that warms the surface of the Earth occurs because of a few minor constituents of the atmosphere.
GLOBAL WARMING An Inconvenient Truth or A Convenient Lie.
5. Future climate predictions Global average temperature and sea-level are projected to rise under all IPCC scenarios Temperature: +1.8°C (B1) to +4.0°C.
Turn Down the Heat: State of the Climate (and Australia) February 2014 Damien Lockie.
Climate Change Climate Change.
Climate Change – 1: Background
Climate.
G lobal warming For past climate change see Paleoclimatology and Geologic temperature record. For scientific and political disputes, see Global warming.
3. Climate Change 3.1 Observations 3.2 Theory of Climate Change 3.3 Climate Change Prediction 3.4 The IPCC Process.
Climate Change. Have you noticed any change in our summer weather? Our winter weather? The arrival of spring? Have you noticed any change in our summer.
European capacity building initiativeecbi Climate Change: an Introduction ecbi Workshops 2007 Claire N Parker Environmental Policy Consultant european.
Global Warming Inez Fung University of California, Berkeley April 2007.
Observed Global Climate Change. Review of last lecture Air pollution. 2 categories 6 types of major pollutants: particulates, carbon oxides, sulfur dioxides,
Outline Further Reading: Detailed Notes Posted on Class Web Sites Natural Environments: The Atmosphere GE 101 – Spring 2007 Boston University Myneni L30:
Evidence for climate Change The Working Group I Report of the Intergovernmental Panel on Climate Change Fourth Assessment Report Nathan Bindoff and others.
Introduction to Climate Change Science. Weather versus Climate Weather refers to the conditions of the atmosphere over a short period of time, such as.
1 Observed physical and bio-geochemical changes in the ocean Nathan Bindoff ACECRC, IASOS, CSIRO MAR University of Tasmania TPAC.
Climate Change: From Global Predictions to Local Action Mathematical Sciences Research Institute April
Gary McManus Associate State Climatologist Oklahoma Climatological Survey Global Climate Change and the Implications for Oklahoma.
Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread.
Human Induced Climate Change: The IPCC Fourth Assessment AKE-Programme Annual Conference the German Physical Society (DPG) Regensberg, March
CESD SAGES Scottish Alliance for Geoscience, Environment & Society Observing and Modelling Climate Change Prof. Simon Tett, Chair of Earth System Dynamics.
SNC2D Brennan Climate Change. Paleoclimate record Ice samples Sediment cores Pollen records Peat Bogs Fossil records Proxies –Use data that represents.
(Slide Source: William J. Gutowski, Jr., Iowa State University) The Science of Climate Change - Overview Primary Source: IPCC WG-I - Summary for Policymakers.
Climate Change Science -- the Present Stuart Godfrey (retired CSIRO Oceanographer) What is it like being a Greenhouse climate scientist? Perth, WA river.
Modern Climate Change Darryn Waugh OES Summer Course, July 2015.
Projecting changes in climate and sea level Thomas Stocker Climate and Environmental Physics, Physics Institute, University of Bern Jonathan Gregory Walker.
1 Observed physical and bio-geochemical changes in the ocean Nathan Bindoff ACECRC, IASOS, CSIRO MAR University of Tasmania TPAC.
Projection of Global Climate Change. Review of last lecture Rapid increase of greenhouse gases (CO 2, CH 4, N 2 O) since 1750: far exceed pre-industrial.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) Working Group I Working Group I Contribution to the IPCC Fourth Assessment Report Climate Change 2007:
IPCC WG1 AR5: Key Findings Relevant to Future Air Quality Fiona M. O’Connor, Atmospheric Composition & Climate Team, Met Office Hadley Centre.
Climate Change and Extreme Weather: IPCC Findings by: Yap Kok Seng Malaysian Meteorological Department Ministry of Science, Technology and Innovation National.
Global Climate Change The Evidence and Human Influence Principle Evidence CO 2 and Temperature.
18 April 2007 Climate Change 2007: The Physical Science Basis Chapter 5:Observations: Oceanic Climate Change and Sea Level The Working Group I Report of.
01 March 2007Royal Society Meeting Climate Change 2007: The Physical Science Basis Chapter 5:Observations: Oceanic Climate Change and Sea Level The Working.
1Climate Change and Disaster Risk Science and impacts Session 1 World Bank Institute Maarten van Aalst.
Climate Change: an Introduction ecbi Workshops 2007 Claire N Parker Environmental Policy Consultant european capacity building initiative initiative européenne.
Climate Change Information Seminar Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) – the relevance to FAO’s activities Claudia.
9.1Evidence of Changing Climate. Rising Temperatures  Records of Earth’s average temperatures over the past 100 years  Records show avg. temperatures.
Years before present This graph shows climate change over the more recent 20,000 years. It shows temperature increase and atmospheric carbon dioxide. Is.
© Yann Arthus-Bertrand / Altitude The Summary for PolicyMakers - final plenary The Summary for PolicyMakers - final plenary Michael Prather, LA, Chapter.
Global Warming Environmental Science January 4, 2011.
Climate Change – is it really happening? Kathy Maskell Walker Institute for Climate System Research, University of Reading.
Climate Change & The Probability of Extreme Events Brian Hoskins Royal Society Research Professor & Professor of Meteorology University of Reading Department.
IPCC First Assessment Report 1990 IPCC Second Assessment Report: Climate Change 1995 IPCC Third Assessment Report: Climate Change 2001 IPCC Fourth Assessment.
Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC.
Climate Change slides for Exam Two
Assembled by Brenda Ekwurzel
IPCC Climate Change 2013: The Physical Science Basis
Intergovernmental Panel on Climate Change
Changes in surface climate of the tropical Pacific
Inez Fung University of California, Berkeley April 2007
The Geographies of Climate Change
Presentation transcript:

Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February 2007

DIRECT OBSERVATIONS OF RECENT CLIMATE CHANGE Since the TAR, progress in understanding how climate is changing in space and in time has been gained through: improvements and extensions of numerous datasets and data analyses improvements and extensions of numerous datasets and data analyses broader geographical coverage broader geographical coverage better understanding of uncertainties, and better understanding of uncertainties, and a wider variety of measurements a wider variety of measurements

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global mean sea level. Direct Observations of Recent Climate Change

Gobal mean temperature Global average sea level Northern hemisphere Snow cover

Direct Observations of Recent Climate Change Global average air temperature Updated 100-year linear trend of 0.74 [0.56 to 0.92] o C for Larger than corresponding trend of 0.6 [0.4 to 0.8] o C for given in TAR Average ocean temperature increased to depths of at least 3000 m – ocean has absorbed 80% of heat added > seawater expansion and SLR

At continental, regional, and ocean basin scales, numerous long-term changes in climate have been observed. These include: –Changes in Arctic temperatures and ice, –Widespread changes in precipitation amounts, ocean salinity, wind patterns –and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones Direct Observations of Recent Climate Change

Global mean temperatures are rising faster with time   Warmest 12 years: 1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000 Period Rate Years  /decade

SST Land Land surface temperatures are rising faster than SSTs

Warming in the Arctic is double that for the globe from 19 th to 21 st century and from late 1960s to present. Warmth 1925 to 1950 in Arctic was not as widespread as recent global warmth. Note different scales Arctic vs Global annual temperature anomalies (°C)

Further Changes in Artic and Frozen Ground Annual average Arctic sea ice extent shrunk by 2.7 % per decade, decreases in summer 7.4 % Temperatures at the top of permafrost layer have generally increased since the 1980s by up to 3°C The maximum area covered by seasonally frozen ground has decreased by about 7% in Northern Hemisphere since 1900, in spring of up to 15%.

Changes in Precipitation, Increased Drought Significantly increased precipitation in eastern parts of North and South America, northern Europe and northern and central Asia. The frequency of heavy precipitation events has increased over most land areas - consistent with warming and increases of atmospheric water vapour Drying in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. More intense and longer droughts observed since the 1970s, particularly in the tropics and subtropics.

Widespread changes in extreme temperatures observed Cold days, cold nights and frost less frequent Hot days, hot nights, and heat waves more frequent Observational evidence for an increase of intense tropical cyclone activity in the North Atlantic since about 1970, correlated with increases of tropical sea surface temperatures Other changes in Extreme Events

Regions of disproportionate changes in heavy (95 th ) and very heavy (99 th ) precipitation Proportion of heavy rainfalls: increasing in most land areas

Smoothed annual anomalies for precipitation (%) over land from 1900 to 2005; other regions are dominated by variability. Land precipitation is changing significantly over broad areas Increases Decreases

The most important spatial pattern (top) of the monthly Palmer Drought Severity Index (PDSI) for 1900 to The time series (below) accounts for most of the trend in PDSI. Drought is increasing most places Mainly decrease in rain over land in tropics and subtropics, but enhanced by increased atmospheric demand with warming

Circulation change Climate change is affecting storm tracks, winds and temperature patterns Anthropogenic forcing has likely contributed

N. Atlantic hurricane record best after 1944 with aircraft surveillance. Global number and percentage of intense hurricanes is increasing North Atlantic hurricanes have increased with SSTs SST ( ) Marked increase after 1994

Frequency of occurrence of cold or warm temperatures for 202 global stations for 3 time periods: 1901 to 1950 (black), 1951 to 1978 (blue) and 1979 to 2003 (red) Warm nights are increasing; cold nights decreasing  fewer more 

Extreme Heat Wave Summer 2003 Europe Heat waves are increasing: an example

Snow cover and Arctic sea ice are decreasing Spring snow cover shows 5% stepwise drop during 1980s Arctic sea ice area decreased by 2.7% per decade (Summer: -7.4%/decade)

Glaciers and frozen ground are receding Area of seasonally frozen ground in NH has decreased by 7% from 1901 to 2002 Increased Glacier retreat since the early 1990s

Some aspects of climate have not been observed to change: Tornadoes Dust-storms Hail Lightning Antarctic sea ice Direct Observations of Recent Climate Change

Paleoclimate information supports the interpretation that the warmth of the last half century is unusual in at least the previous 1300 years. The last time the polar regions were significantly warmer than present for an extended period (about 125,000 years ago), reductions in polar ice volume led to 4 to 6 metres of sea level rise. A Paleoclimatic Perspective

CO 2, CH 4 and N 2 O Concentrations - far exceed pre-industrial values - increased markedly since 1750 due to human activities Relatively little variation before the industrial era Human and Natural Drivers of Climate Change

The atmospheric concentration of CO 2 and CH 4 in 2005 exceeds by far the natural range of the last 650,000 years CO 2 CH 4

Volcanic aerosols Eruptions are episodic and aerosol effects transitory (1-2 years)

Global-average radiative forcing estimates and ranges

Human and natural drivers of climate change Annual fossil CO 2 emissions increased from an average of 6.4 GtCper year in the 1990s, to 7.2 GtC per year in CO 2 radiative forcing increased by 20%from 1995 to 2005, the largest in any decade in at least the last 200 years Changes in solar irradiance since 1750 are exstimated to have caused a radiative forcing of [+0.06 to +0.30] Wm -2

Human and Natural Drivers of Climate Change The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report (TAR), leading to very high confidence that the globally averaged net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] W m -2.

extremely unlikely without external forcing very unlikely due to known natural causes alone Observed widespread warming Global ocean Annual Trend 1979 to 2005 SurfaceTroposphere

Attribution are observed changes consistent with  expected responses to forcings  inconsistent with alternative explanations Observations All forcing Solar+volcanic

Understanding and Attributing Climate Change Continental warming likely shows a significant anthropogenic contribution over the past 50 years

Understanding and Attributing Climate Change Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations. This is an advance since the TAR’s conclusion that “most of the observed warming over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations”. Discernible human influences now extend to other aspects of climate, including ocean warming, continental- average temperatures, temperature extremes and wind patterns

Understanding Climate Change Climate Sensitivity Analysis of climate models together with constraints from observations enables an assessed likely range for climate sensitivity and provides increased confidence in the understanding of climate system response to radiative forcing. Assumes doubling of carbon dioxide concentration Model experiment - not a projection Estimates equilibrium response to sustained radiative forcing

Equilibrium Climate Sensitivity Surface warming following a sustained doubling of CO2 concentrations Best estimate 3°C; likely 2-4.5°C; very unlikely less than 1.5°C; higher values not ruled out

Projections of Future Changes in Climate Continued greenhouse gas emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century. Best estimate and assessed likelihood range for future temperature projections for first time Broadly similar to the TAR but not directly comparable

Projections of Future Changes in Climate For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios. Even if the concentrations of all greenhouse gases and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Earlier IPCC projections of 0.15 to 0.3 o C per decade can now be compared with observed values of 0.2 o C

Projections of Future Changes in Climate Best estimate for low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and for high scenario (A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C). Broadly consistent with span quoted for SRES in TAR, but not directly comparable

Projections of Future Changes in Climate Near term projections insensitive to choice of scenario Longer term projections depend on scenario and climate model sensitivities

Projected warming in 21st century expected to be greatest over land and at most high northern latitudes and least over the Southern Ocean and parts of the North Atlantic Ocean Projections of Future Changes in Climate

Precipitation increases very likely in high latitudes Decreases likely in most subtropical land regions

Projections of Future Changes in Climate There is now higher confidence in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation, and some aspects of extremes and of ice.

Snow cover is projected to contract Widespread increases in thaw depth most permafrost regions Sea ice is projected to shrink in both the Arctic and Antarctic In some projections, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century PROJECTIONS OF FUTURE IN CLIMATE PROJECTIONS OF FUTURE CHANGES IN CLIMATE

Very likely that hot extremes, heat waves, and heavy precipitation events will continue to become more frequent Likely that future tropical cyclones will become more intense, with larger peak wind speeds and more heavy precipitation less confidence in decrease of total number Extra-tropical storm tracks projected to move poleward with consequent changes in wind, precipitation, and temperature patterns PROJECTIONS OF FUTURE CHANGES IN CLIMATE

Based on current model simulations, it is very likely that the meridional overturning circulation (MOC) of the Atlantic Ocean will slow down during the 21st century. longer term changes not assessed with confidence Temperatures in the Atlantic region are projected to increase despite such changes due to the much larger warming associated with projected increases of greenhouse gases. PROJECTIONS OF FUTURE CHANGES IN CLIMATE

Anthropogenic warming and sea level rise would continue for centuries due to the timescales associated with climate processes and feedbacks, even if greenhouse gas concentrations were to be stabilized. Temperatures in excess of 1.9 to 4.6°C warmer than pre-industrial sustained for millennia…eventual melt of the Greenland ice sheet. Would raise sea level by 7 m. Comparable to 125,000 years ago. PROJECTIONS OF FUTURE CHANGES IN CLIMATE

Watch out for … Working Group 2 Brussels, Belgium; 2-5 April 2007 Working Group 3 Bangkok,Thailand; 30 April – 3 May 2007 Synthesis Report Valencia, Spain; November