Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Playing around with different vacua a heretical (perturbative)

Slides:



Advertisements
Similar presentations
How to Factor Quadratics of the Form
Advertisements

The microcanonical ensemble Finding the probability distribution We consider an isolated system in the sense that the energy is a constant of motion. We.
Theories of gravity in 5D brane-world scenarios
Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
Brane-World Inflation
Summing planar diagrams
Work done in collaboration with Stefano Frixione 1 Leonardo Bertora, 2004 April 14 Jet and Di-jet production in Photon–Photon collisions Leonardo Bertora.
Large Nc Gauge Theories on the lattice Rajamani Narayanan Florida International University Rajamani Narayanan August 10, 2011.
Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.
Extended Kalman Filter (EKF) And some other useful Kalman stuff!
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
Recent Application of NSPT Francesco Di Renzo Bielefeld - October 13, 2006 QCD on Teraflops Computers Recent Applications of Numerical Stochastic Perturbation.
Green’s function of a dressed particle (today: Holstein polaron) Mona Berciu, UBC Collaborators: Glen Goodvin, George Sawaztky, Alexandru Macridin More.
Functional renormalization – concepts and prospects.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Comparative survey on non linear filtering methods : the quantization and the particle filtering approaches Afef SELLAMI Chang Young Kim.
Notes, part 5. L’Hospital Another useful technique for computing limits is L'Hospital's rule: Basic version: If, then provided the latter exists. This.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Antonio RagoUniversità di Milano Techniques for automated lattice Feynman diagram calculations 1 Antonio RagoUniversità di Milano Techniques for automated.
2. Solving Schrödinger’s Equation Superposition Given a few solutions of Schrödinger’s equation, we can make more of them Let  1 and  2 be two solutions.
PHYS 3313 – Section 001 Lecture #17
Effective Polyakov line actions from the relative weights method Jeff Greensite and Kurt Langfeld Lattice 2013 Mainz, Germany July 2013 Lattice 2013 Mainz,
1 CE 530 Molecular Simulation Lecture 7 David A. Kofke Department of Chemical Engineering SUNY Buffalo
1 Statistical Mechanics and Multi- Scale Simulation Methods ChBE Prof. C. Heath Turner Lecture 11 Some materials adapted from Prof. Keith E. Gubbins:
Cosmological Vacuum Selection and Meta-Stable Susy Breaking Ioannis Dalianis IFT-University of Warsaw.
Chang-Kui Duan, Institute of Modern Physics, CUPT 1 Harmonic oscillator and coherent states Reading materials: 1.Chapter 7 of Shankar’s PQM.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Deterministic vs. Random Maximum A Posteriori Maximum Likelihood Minimum.
Modern Navigation Thomas Herring
1 Lesson 8: Basic Monte Carlo integration We begin the 2 nd phase of our course: Study of general mathematics of MC We begin the 2 nd phase of our course:
Uniform discretizations: the continuum limit of consistent discretizations Jorge Pullin Horace Hearne Institute for Theoretical Physics Louisiana State.
STAR Sti, main features V. Perevoztchikov Brookhaven National Laboratory,USA.
Background Independent Matrix Theory We parameterize the gauge fields by M transforms linearly under gauge transformations Gauge-invariant variables are.
Speaker: Zhi-Qiang Guo Advisor: Bo-Qiang Ma School of Physics, Peking University 17 th, September, 2008.
Chapter 5 Parameter estimation. What is sample inference? Distinguish between managerial & financial accounting. Understand how managers can use accounting.
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Talk at KEK for String Advanced Lectures,
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Seminar at University of Tokyo,
On the unit of mass: The mass of a macroscopic object is the sum of that of all its microscopic constituents and of a weak approximately calculable.
ECE-7000: Nonlinear Dynamical Systems Overfitting and model costs Overfitting  The more free parameters a model has, the better it can be adapted.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
AUGUST 2. MATH 104 Calculus I Review of previous material…. …methods and applications of integration, differential equations ………..
JPS08autumnT.Umeda (Tsukuba)1 Thermodynamics at fixed lattice spacing Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration JPS meeting, Yamagata.
The XXI International Symposium on Lattice Field Theory Lattice 2003 Tsukuba, Ibaraki, Japan July 18, 2003 Four loop computations in 3d SU(3) (plus Higgs)
Advanced Engineering Mathematics, 7 th Edition Peter V. O’Neil © 2012 Cengage Learning Engineering. All Rights Reserved. CHAPTER 4 Series Solutions.
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
The Dirac operator spectrum from a perturbative approach Francesco Di Renzo Seul August 2009 xQCD 2009 The Dirac operator spectrum from a perturbative.
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
Canonical Equations of Motion -- Hamiltonian Dynamics
3 (or 4!) loops renormalization constants for lattice QCD Francesco Di Renzo Nicosia - September 14, 2005 Workshop on Computational Hadron Physics.
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
Runge Kutta schemes Taylor series method Numeric solutions of ordinary differential equations.
Quantum One.
Matter-antimatter coexistence method for finite density QCD
Adjoint sector of MQM at finite N
Geometric Integrators in the Study of Gravitational Collapse
Quantum One.
Quantum One.
2. Solving Schrödinger’s Equation
Quantum One.
Quantum Two.
Diagrammatic Monte-Carlo for non-Abelian field theories and resurgence
Adaptive Perturbation Theory: QM and Field Theory
Adnan Bashir, UMSNH, Mexico
Convergent Weak-Coupling Expansions for non-Abelian Field Theories from DiagMC Simulations [ , ] Pavel Buividovich (Regensburg University)
Renormalization and the renormalization group
(ITEP, Moscow and JINR, Dubna)
Pavel Buividovich (Regensburg University)
Functional Renormalization 3
Quantum One.
Presentation transcript:

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Playing around with different vacua a heretical (perturbative) way to FT Lattice QCD F. Di Renzo Università di Parma and INFN, Parma, Italy

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 A disclaimer … Despite the fact that I have been working (also) in Finite Temperature for some time, I still regard myself as an ousider in the field. Much of what I know comes from collaborations with experts in the field (M. Laine. Y. Schroeder, M.P. Lombardo, M. DElia) … … in what follows errors and naiveness are of my own … My own expertise has been for quite a long time in a (non diagrammatic) way of doing Lattice Perturbation Theory. While LPT has never been regarded as such a useful tool in FT Lattice QCD (even harder than at T=0!), I will try to elaborate on a proposal aiming at gaining some information from it. No results will be given. This is really the discussion of a proposal.

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Outline Preludio: Finite Temperature Perturbation Theory Preludio: Finite Temperature Perturbation Theory vs Finite Temperature non-perturbative Lattice QCD. vs Finite Temperature non-perturbative Lattice QCD. A naive computation in LPT: Polyakov loop to two loop. A naive computation in LPT: Polyakov loop to two loop. A skecth of the technique by which computations were made (NSPT): A skecth of the technique by which computations were made (NSPT): from Stochastic Quantization to Stochastic Perturbation Theory from Stochastic Quantization to Stochastic Perturbation Theory from SPT to Numerical SPT from SPT to Numerical SPT An How-To for Lattice Gauge Theories and why we mention different vacua. An How-To for Lattice Gauge Theories and why we mention different vacua. The proposal (an even less standard LPT): The proposal (an even less standard LPT): Can we learn anything from convergence properties of FT series? Z3 sectors are obvious different vacua for Perturbative Lattice QCD … Z3 sectors are obvious different vacua for Perturbative Lattice QCD … … and an interesting computation could be the Dirac operator spectrum! … and an interesting computation could be the Dirac operator spectrum!

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 FT Perturbation Theory vs FT Lattice QCD A simple-minded comparison … Finite Temperature PT is simply derived by compactifying one dimension, but this results in quite delicate issues. Simply keep in mind: T and g are both parameters to deal with! IR problems, resummations needed, different scales (2 T, gT, g 2 T) … In non-perturbative Lattice QCD simulations life appears a bit easier with some respects: Basic ingredient is a N t * N s 3 lattice (N t < N s ) There is no explicit reference to T: (i.e. the coupling) is determining it, once N t is fixed … is the only parameter you explicitely deal with!

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 A naive Lattice PT computation And an even more ingenuous curiosity … The Polyakov loop is one the most important quantities in FT Lattice QCD. For a one loop computation (on finite lattices) see Heller, Karsch NPB 251 (85) 254. I took a 4 * 24 3 lattice and computed it to two loop (going higher would be quite easy) The series does not appear to be much convergent … Much the same I could inspect in the computation of P s - P t

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Some comments are in order: Inferring convergencies properties from a two loop computation is crazy … Both quantity (as considered) are not so well defined (Polyakov loop is dominated by the linearly divergent HQ self-energy; the difference of the plaquettes is not the properly defined energy density). LPT is not so celebrated as for convergence properties (still, many Zs are fine). Having said all that, I was nevertheless quite impressed: even the (in)famous 10 loop plaquette appears by far more convergent … A question comes to your mind (at least if you are as naive as I am): Can the behavior be a signature of the critical temperature? i.e. Can one learn anything in FT Lattice QCD from the convergence properties of the series? This is quite common in statistical mechanics, e.g. power-law singularities traced by

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 From Stochastic Quantization to NSPT NSPT comes almost for free from the framework of Stochastic Quantization (Parisi and Wu, 1980). From the latter originally both a non-perturbative alternative to standard Monte Carlo and a new version of Perturbation Theory were developed. NSPT in a sense interpolates between the two. Now, the main assertion is very simply stated: asymptotically Stochastic Quantization In the previous formula, is a gaussian noise, from which the stochastic nature of the equation originates. Given a field theory, Stochastic Quantization basically amounts to giving to the field an extra degree of freedom, to be thought of as a stochastic time in which an evolution takes place according to the Langevin equation

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 To understand, take the standard example: 4 theory... The free case is easy to solve in term of a propagator and for the interacting case you can always trade the differential equation for an integral one...

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 If you insert the previous expansion in the Langevin equation, the latter gets translated into a hierarchy of equations, each for each order, each dependent on lower orders. Stochastic Perturbation Theory Since the solution of Langevin equation will depend on the coupling constant of the theory, look for the solution as a power expansion Observation: we can get power expansions from Stochastic Quantizations main assertion, e.g. We already know the solutions for 4 theory: Diagrammatically... + λ + λ 2 ( +... ) + O(λ 3 ) Now, also observables are expanded + 3 λ ( + ) + O(λ 2 )... and this is a propagator...

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 NSPT (Di Renzo, Marchesini, Onofri 94) simply amounts to the numerical integration of SPT equations on a computer! Lets take again the φ 4 theory, but notice that this time we are dealing with a LATTICE regularization in x-space and the time evolution has of course been discretized... Numerical Stochastic Perturbation Theory These equation are now put on a computer. A measurement is now obtained by constructing composite operators, i.e. Remember the main result of Stochastic Quantization: the expectation values are now traded for temporal averages over the stochastic evolution...

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Langevin equation for LGT goes back to the 80s (Cornell Group 84): the main point is to formulate a stochastic process in the group manifold. NSPT for Lattice Gauge Theories (JHEP0410:073) Then one has to implement a finite difference integration scheme (i.e. Euler)

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 1 is not the only trivial order for our expansion! Other vacua are viable choices as well! NSPT around non trivial vacua Since dynamics is dictated by the equations of motion, any classical solution is good eneugh! U x (t; )

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Fermionic observables are then constructed by inverting (maybe several times) the Dirac matrix on convenient sources. The Dirac matrix in turn is a function of the gluonic field, and because of that is expressed as a series as well The good point is that free part is diagonal in p-space, while interactions are diagonal in x-space: go back and forth via FFT! This is also crucial in taking into account fermions in the evolution.

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 The proposal A heretical approach to Finite Temperature (PT) (Lattice QCD) In the Polyakov loop computation we were sitting on a given lattice size (4 * 24 3 ) and started computing... No reference to temperature T was made from the beginning. We now would like to have a FT strategy to implement. We do not want to have a standard FT perturbative approach! We would rather go for the attitude of standard non-perturbative FT Lattice QCD: let be our only parameter and let us keep on expanding in. Take a N t * N s 3 lattice and compute observables as series in. Take N s be bigger and bigger (one would like a limit to infinity …) at fixed N t, i.e. try an infinite volume extrapolation in order to get the series you are aiming at. Your analysys of the series could suggest a (quasi?) singular behavior in N t Convert to a temperature. This should be done in terms of (asymptotic) scaling and knowledge of Lattice parameter. Repeat for bigger and bigger N t aiming at a continuum limit.

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Once again, some comments are in order. One could ask: So, what? This really looks like what one does in the non-perturbative framework … Well … Convergencies properties can be quite precise in describing singular points. One does not need to scan a region in and could save resources to pin down a better continuum limit. It could be that subtleties of standard FT Perturbation Theory are avoided: only the coupling in place (this required to commit to a finite number of points...) One needs to revert to (asymptotic) scaling to translate to a physical temperature (but remember that the parameter is by now quite well known). Fermions are easily treated in NSPT. … The idea of different vacua is quite intriguing in this framework: Different Z3 sectors are natural candidate to investigate.

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Actually the Polyakov loop was measured in the background not of 1, but of z1. As a check, one could verify that multiplying by z* one goes back to a real result. A useful (I think) computation to undertake: the eig-problem for the Dirac operator in the background of different Z3 sectors. See C. Gattringer PRL 97 (06) Notice that computing corrections to a spectrum (the perturbative, field- independent, free field fermionic spectrum) is a text-book excercise. Only some caveats: Degenerate case of Perturbation Theory. The Wilson Dirac operator (the first to undertake) is not hermitian, but (only) 5 -hermitian. Go for Overlap as well! I would have liked to give some preliminary results … Unfortunately I cant …

Playing around with different vacua Francesco Di Renzo Frascati - August 6, 2007 xQCD07 Conclusions I only discussed some idea that are at the moment a proposal.I only discussed some idea that are at the moment a proposal. The NSPT Dirac operator spectrum computation will be undertaken for sure.The NSPT Dirac operator spectrum computation will be undertaken for sure. These were only ideas, so that I suspect a possible comment could be: Wheres the beef? Ok, you cant eat, but maybe I was able to let you smell it!These were only ideas, so that I suspect a possible comment could be: Wheres the beef? Ok, you cant eat, but maybe I was able to let you smell it!