Presentation is loading. Please wait.

Presentation is loading. Please wait.

Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.

Similar presentations


Presentation on theme: "Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009."— Presentation transcript:

1 Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009 * arXiv:0904.3144v1 [hep-th]

2 Supersymmetric Discretized Light-Cone Quantization Simply put: SDLCQ is a practical scheme to calculate masses of bound states -use special quantization to make discretization easy -discretize the theory (“put system in a box”)  discretization parameter K - work (preferably) in low dimensions (two, three..) -supersymmetry to get rid of renormalization issues -typically solve problems numerically

3 Light-Cone Quantization Use light-cone coordinates Hamiltonian approach: ψ(t) = H ψ(0) Theory vacuum is physical vacuum - modulo zero modes (D. Robertson)

4 The Theory: N =1 SYM in 3D with SYM & Chern-Simons couplings g & κ

5 Particle Content of the Theory Adjoint gauge boson: (A μ ) ab Adjoint (real) fermion: Λ ab Fundamental complex scalar: ξ a Fundamental Dirac fermion: Ψ a Chern-Simons term gives effective mass proportional to coupling κ to the adjoint particles

6 Adding a VEV generates mass for the fundamental particles Add vacuum expectation value (VEV) to perpendicular component of the gauge field in 3D theory Shift field by its VEV, express theory in terms of new field: Dimensionally reduce to 2D by dropping derivatives w.r.t. transverse coordinates

7 Extra Terms induced by the VEV The shift by the VEV generates extra terms in the supercharge which are fairly simple: In SDLCQ mode decomposition it reads

8 Symmetries The original theory is invariant under –Supersymmetry (obviously) –Parity: P –Reversal of the orientation of the chain of partons: O Shifting by the VEV destroys P and O, but leaves PO intact Adding a CS term destroys P Together, they only leave SUSY intact

9 Analytical Results We can solve the theory for K=3 analytically because each symmetry sector has only 4 basis states A quartic equation for the mass eigenvalues arises Massless bound-states exist for

10 Limits: v,κ  ∞ As the parameters get large we expect a free theory (SYM coupling g becomes unimportant) Lightest states in the limit are short (2 fundamental partons), few Heavy states (large relative momentum) are long, many

11 Bound- State Masses vs. VEV Masses (squared) grow quadratically Some masses decline Massless states appear at some VEVs

12 Close-up at larger K Combination of parabolic M 2 (VEV) curves yields light/massless states As K grows more lighter states and more points of masslessness appear

13 Continuum limit As K  ∞ the lowest state becomes massless even at VEV=1

14 Average number of partons in bound state Ten lightest states at K=7 become “shorter” as VEV grows

15 Bound- State Masses with VEV vs. CS coupling Masses (squared) grow quadratically Some masses decline No massless states appear

16 Continuum limit with CS term As K  ∞ the lowest state remains massive (at VEV=1 and κ =1)

17 Structure Functions Normalization: Sum over argument yields average number of type A partons in the state Expectation: –Large momenta of fundamentals since state is short –To lower mass, have to have two fundamental fermions with same momentum  Fundamentals split momentum evenly  peaked around x=0.5 –Adjoints have small momenta –Few adjoints

18 Lightest state K= 8, v = 1, κ = 1 #aB=0.67 #aF=0.11 #fB=1.08 #fF=0.92 g aF g aB g fB g fF

19 Second- Lightest state K=8, v=1,K=8, v=1, κ =1 #aB=0.72 #aF=0.07 #fB=0.89 #fF=1.11 g aF g aB g fB g fF

20 Conclusions Supersymmetric Discretized Light-Cone Quantization (SDLCQ) is a practical tool to calculate bound state masses, structure functions and more Generated mass term for fundamentals from VEV of perpendicular gauge boson in higher dimensional theory Studied masses and bound-state properties as a function of v (“quark mass”) & κ (“gluon mass”) Spectrum separates into (almost) massless and very heavy states

21 Extra Slides

22 Discretization Work in momentum space Discretization: continuous line  K points (K=1,2,3…∞ discretization parameter ) integration  sum over values at K points ( trapezoidal rule) operators  matrices “ Quantum Field theory”  “Quantum Mechanics” E.g. two state system Hamiltonian matrix: E 0 -D H= -D E 0 Now: “quarter-million state system”  More states, more precision !

23 What does the Computer do? works at specific discretization parameter K generates all states at this K  basis constructs Hamiltonian matrix in this basis diagonalizes the Hamiltonian matrix, i.e. solves the theory for us  eigenvalues are masses of bound states  gets also eigenfunctions (wavefunctions) Repeat for larger and larger K !

24 Extracting Results All observables (masses, wavefunctions) are a function of the discretization parameter K Run as large a K as you can possible do Extrapolate results: K  ∞  ”The next step in K is always the most important”

25 Computers and Codes Runs on Linux PC and parallel computers Typical computing times: –Test runs: few minutes – production runs: few days Production runs also on: OSC machines, Minnesota Supercomputing Center Code compatibility insured by tests on different machines (even Macintosh! ) Evolution of the code: Mathematica  C++  data structure improved code


Download ppt "Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009."

Similar presentations


Ads by Google