Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.

Slides:



Advertisements
Similar presentations
Present and future limitations of SHE in-beam experiments R-D Herzberg.
Advertisements

SYNTHESIS OF SUPER HEAVY ELEMENTS
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Contributions to Nuclear Data by Radiochemistry Division, BARC
Pete Jones University of Jyväskylä INTAG Workshop GSI, Germany May 2007 Status of digital electronics at JYFL Pete Jones Department of Physics University.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
The Nature of Molecules
Fragment Mass Analyzer Darek Seweryniak, ANL C. N. Davids et al., Nucl. Instrum. Meth., B 70, 358 (1992).
Beta and particle decay spectroscopy at the Super FRS Zenon Janas Nuclear Spectroscopy Division Warsaw University.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Paul Greenlees, Department of Physics, University of Jyväskylä, FinlandENAM’04, Callaway Gardens, Sept04 In-beam and decay spectroscopy of transfermium.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Trends of the Periodic Table
Periodic Table Of Elements
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Reiner Krücken Welcome to Kloster Banz. Reiner Krücken The Munich Accelerator for Fission Fragments at the FRM II in Garching Facility Overview Status.
Saclay, 30 January 2007 Rauno Julin Department of Physics University of Jyväskylä FinlandJYFL In-beam Spectroscopy of In-beam Spectroscopy of Transfermium.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
RITU and the new separator at Jyväskylä J. Uusitalo, J. Sarén, M. Leino RITU and γ-groups University of Jyväskylä, Department of Physics.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
Structure of Super-Heavy Elements Andreas Heinz A. W. Wright Nuclear Structure Laboratory Yale University ATLAS Workshop, August 8-9, 2009.
Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Observation of new neutron-deficient multinucleon transfer reactions
VAMOS « Hot » results and perspectives * Spectroscopy of n-rich nuclei produced by fission * New gas-filled spectrometer-separator for fusion Getting ready.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Technical solutions for N=Z Physics David Jenkins.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Michael Dworschak, GSI for the SHIPTRAP collaboration
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
TOPIC 0C: Atomic Theory.
1.7 Trends in the Periodic Table
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Peripheral collisions Hans-Jürgen Wollersheim
Vamos + Exogam Spectrometer
Periodic Table of the Elements
PERIODIC TABLE OF ELEMENTS
Electron Configurations
Edexcel Topic 1: Key concepts in chemistry
Line Spectra and the Bohr Model
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI Christelle StödelGANIL Michael SewtzLMU München Krunoslav SuboticINN Vinca

S. Hofmann, Nucl. Phys. News Intl Synthesis & Decay Spectroscopy EURISOL intensities at least 10x lower than stable beams Produce & study neutron-rich nuclei?

What can be done with 132 Sn? X Sn N=82 Study region around end of Dubna chains

Example reactions 132 Sn Cs (t 1/2 = 30 years) → 267 Db* 132 Sn + 132,134,136 Xe → 264,266,268 Rf* 132 Sn Ba → 270 Sg* 132 Sn La → 271 Bh* 132 Sn + 140,142 Ce → 272,274 Hs* 132 Sn Nd → Ds* 90,92 Kr Ta → 271,273 Mt* 90,92 Kr W → 276,278 Ds* 44 Ar Th → 276 Hs* 44 Ar U → 282 Ds*

Egido & Robledo PRL Kr Dy  256 No * E x = 24 MeV High spin states in SHE 48 Ca Pb  256 No * E x = 21 MeV Predicted simultaneous alignment of  i 13/2 and j 15/2 around 30ħ

In-beam spectroscopy - which cases? Already Done Neutron Number Proton Number Potentially doable Feasibility depends on the specifics of each and every case!

Example reactions 92 Kr Dy → 256 No* 132 Sn Xe → Rf* 50 Ca Hg → 254 Fm* 50 Ca Tl → 255 Md* 50 Ca Pb → 258 No* 50 Ca Bi → 259 Lr*

Gamma-ray Spectrometer Dominant channel is constant ~ b fission. This limits Ge rate! Target wheel spokes need beam sweeping High efficiency, granularity and energy resolution (AGATA!) “Conventional” alternative array when AGATA is elsewhere?

Electron Spectrometer   Fission does not readily produce CE   SHE produce more CE than Gamma High (>10%) efficiency up to 0.5 MeV Energy resolution 1 keV to resolve L & M CE Couple to recoil separator and/or  array SAGE

Recoil separator or spectrometer Mass resolution not essential if tagging, but could be useful in certain cases? High transmission efficiency (>40%) & beam suppression (>10 12 ) for all reactions. Momentum acceptance >10% Angular acceptance > ±10° Focal plane size matched to detection system Focal plane system to measure all decays (  p, e-, fission) with high efficiency Flexible DAQ for correlations (triggerless TDR?) Rotating or cooled targets Radioactive targets

Resonance Ionization Spectroscopy Buffer gas cell + optical resonator High repetition rate, high power laser systems PIPS detectors Z & A selective detection? Entrance Foil

Ion mobility measurements Ion mobility is related to ion’s size Need: Ion Mobility Spectrometer Direct mass separation (QMS) or magnet Position sensitive parallel plate trigger counter PIPS detector wheel Build on HV platform to extract 60keV beam out of buffer gas cell and allow subsequent mass analysis in magnetic separator?

Beam Requirements Narrow excitation functions  <1% energy resolution Emittance <5  mm rad (as presently available) Wobbling system in addition to target wheel? Stable beam operation for calibration (10-100pnA) Campaigns of experiments for efficient use of beam time

Required floor space Largely dictated by separator (e.g., SHIP is 12m long) Shielding for electrostatic elements & beam dump Space around target for  -ray & electron spectrometers Space at focal plane for spectrometer, atomic physics & chemistry set-ups 20m x 20m is probably reasonable Room background needs to be low!!

Future work Cross section calculations are needed! Rate of scattered beam particles in target chamber ( 132 Te t 1/2 = 70h)

Future work Cross section calculations are needed! Rate of scattered beam particles in target chamber ( 132 Te t 1/2 = 70h) Design of separator, target chamber, spectrometers, … Shielding of beam dump in separator …

In-beam  -ray spectroscopy Lighter neutron-rich nuclei?

Compound nuclei 48 Ca Sn  172 Yb*