Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.

Slides:



Advertisements
Similar presentations
3224 Nuclear and Particle Physics Ruben Saakyan UCL
Advertisements

Some Aspects of Nuclear Structure Paddy Regan Department of Physics University of Surrey Guildford, UK IASEN School 1 Dec 2013 iThemba.
Some (more) Nuclear Structure
Search for key nuclear structure states below 132 Sn M. Górska, M. Pfützner, H. Grawe et al.
Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.
Gamma-ray strength functions Also called in the literature: radiative strength functions photon strength functions Presentation OCL group meeting Ann-Cecilie.
Cutnell/Johnson Physics 7 th edition Classroom Response System Questions Chapter 40 All about Atoms Reading Quiz Questions.
The Quantum Mechanics of MRI Part 1: Basic concepts
The Collective Model Aard Keimpema.
Structure of odd-odd nuclei in the interacting boson fermion-fermion model 3.
Lectures on Nuclear Structure – What nuclei do and why: An empirical overview from a simple perspective CERN, July 2013 Richard F. Casten Yale University.
Nucleon knockout reactions with heavy nuclei Edward Simpson University of Surrey Brighton PRESPEC Meeting 12 th January 2011.
Semi-magic seniority isomers and the effective interactions
P461 - Nuclei II1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections:
Nuclear models. Models we will consider… Independent particle shell model Look at data that motivates the model Construct a model Make and test predictions.
Week 11 Lecture 27 Monday, Oct 30, 2006 NO CLASS : DPF06 conference Lecture 28 Wednesday, Nov 1, 2006 GammaDecaysGammaDecays Lecture 29 Friday, Nov 3,
University of Brighton 30 March 2004RISING stopped beam physics workshop Microsecond isomers in A~110 nuclei Few nuclei have oblate ground states (~86%
Lesson 9 Gamma Ray Decay. Electromagnetic decay There are two types of electromagnetic decay,  -ray emission and internal conversion (IC). In both of.
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
Nuclear de-excitation Outline of approach… Source of radiation Propagation of radiation field Detection of radiation ?? nucleus.
Doctoral Defense of Barak Hadina 18 th January 2008 In-Beam Study of Extremely Neutron Deficient Nuclei Using the Recoil Decay Tagging Technique Opponent:
PHYS 580 Nuclear Structure Chapter5-Lecture1 GAMMA DECAY
6-1 RFSS: Lecture 6 Gamma Decay Part 1 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
Nuclei with more than one valence nucleon Multi-particle systems.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Binding Energy B tot (A,Z) = [ Zm H + Nm n - m(A,Z) ] c 2 B  m.
Gamma and Beta Decay Basics
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
Phys 102 – Lecture 26 The quantum numbers and spin.
Lecture VIII Hydrogen Atom and Many Electron Atoms dr hab. Ewa Popko.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
Experimental evidence for closed nuclear shells Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Isomer Studies as Probes of Nuclear Structure in Heavy, Neutron-Rich Nuclei Dr. Paddy Regan Dept. of Physics University of Surrey Guildford, GU2 7XH
Nuclear Models Nuclear force is not yet fully understood.
1 Alpha Decay  Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit.
Surrey Mini-School Lecture 2 R. F. Casten. Outline Introduction, survey of data – what nuclei do Independent particle model and residual interactions.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Shell Model with residual interactions – mostly 2-particle systems Start with 2-particle system, that is a nucleus „doubly magic + 2“ Consider two identical.
Radiochemistry Dr Nick Evans
AGATA Physics Workshop Istanbul, Turkey May 4-7, 2010 G. Duchêne Deformation in N=40 nuclei G. Duchêne, R. Lozeva, C. Beck, D. Curien, F. Didierjean, Ch.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Shell Model with residual interactions – mostly 2-particle systems Simple forces, simple physical interpretation Lecture 2.
The Nuclear Shell Model A Review of The Nuclear Shell Model By Febdian Rusydi.
Prof. Paddy Regan Department of Physics
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Nuclear Spectrcosopy in Exotic Nuclei Paddy Regan Dept,. Of Physics University of Surrey, Guildford, UK
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
The Semi-empirical Mass Formula
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Gross Properties of Nuclei
Sizes. W. Udo Schröder, 2011 Nuclear Spins 2 Intrinsic Nuclear Spin Nuclei can be deformed  can rotate quantum mech.  collective spin and magnetic effects.
Decay studies in Exotic, Neutron- Rich A~200 Nuclei Steven Steer for the Stopped Beam RISING Collaboration Dept. of Physics, University of Surrey Guildford,
Exotic neutron-rich nuclei
CHEM 312: Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 3 Deformed.
The Chart of Nuclei N=Z As size of nucleus increases, ratio N/Z increases because more neutrons needed to keep nucleus stable Just above stable region,
W. Udo Schröder, 2005 Gamma Decay 1. W. Udo Schröder, 2005 Gamma Decay 2 Photons Photons: generated by moving charge distributions. Distributions can.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Electromagnetic (gamma) decay
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
Search for key nuclear structure states below 132Sn
Surrey Mini-School Lecture 2 R. F. Casten
PHL424: γ-decay γ-decay is an electromagnetic process where the nucleus decreases in excitation energy, but does not change proton or neutron numbers This.
Isospin Symmetry test on the semimagic 44Cr
PHL424: Shell model with residual interaction
Nuclear Physics, JU, Second Semester,
Presentation transcript:

Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy Regan Department of Physics University of Surrey Guildford GU2 7XH

Outline What is an isomer ? Electromagnetic transition rates. Weisskopf Single-Particle Estimates Shell Structure in near spherical nuclei. –Odd-A singly magic nuclei (e.g., 205 Au 126 ) – Why are E1s ‘naturally’ hindered ? Seniority isomers, j 2 & j n configurations ? Near Magic nuclei. –Limited valence space? Core breaking? Magnetic properties: g-factors in seniority isomers.

What is an isomer ? Why/when do nuclear isomers occur ? (i) large change in spin (‘spin-trap’) (ii) small transition energy between states (seniority isomers) (iii) dramatic change in structure/shape (fission isomers) and/or underlying symmetry (K-isomers) What information do isomers gives you ? Isomers occur due to single particle structure. For example, transitions are hindered between states with different structures (note, this is not case for seniority isomers). Metastable (long-lived) nuclear excited state. ‘Long-lived’ could mean: ~ seconds, shape isomers in a-cluster resonances or ~10 15 years 180 Ta 9 - →1 + decay.

‘High-spin’  and  -decaying isomers just above 208 Pb, basically as a result of ‘yrast’ (spin) traps.. 9/2 + 11/2 + (13/2 + ) %  -decay branch, 91% to 13/2 + isomer in 207 Pb, 7% to 1/2 - ground state in 207 Pb, Q  ~ 9 MeV per decay (17/2 + ) 1462 (25/2 + ) 211 Po T 1/2 =25secs T 1/2 =0.5 secs T 1/2 = 61 min T 1/2 = 25 min  - branch =33%  branch = 67% 212 Bi 212 Bi, Z=83, N=129, 9 - from vg 9/2 x  h 9/2 Yrastness is what causes these isomers…they simply have ‘nowhere’ to go to (easily). This yrastness is itself caused by high-j intruders in the nuclear single particle spectrum….

E x >1MeV, T 1/2 >1ms (red), T 1/2 >1hour (black) From P.M. Walker and G.D. Dracoulis, Nature 399, p35 (1999)

EM Transition Rates Classically, the average power radiated by an EM multipole field is given by m(  L) is the time-varying electric or magnetic multipole moment.  is the (circular) frequency of the EM field For a quantized (nuclear) system, the decay probability is determined by the MATRIX ELEMENT of the EM MULTIPOLE OPERATOR, where i..e, integrated over the nuclear volume. (see Introductory Nuclear Physics, K.S. Krane (1988) p330). We can then get the general expression for the probability per unit time for gamma-ray emission, (  L), from:

Note: Transition rates get slower (i.e., longer lifetimes associated with) higher order multipole decays

Weisskopf Single Particle Estimates: These are ‘yardstick’ estimates for the speed of electromagnetic decays for a given electromagnetic multipole. They depend on the size of the nucleus (i.e., A) and the energy of the photon (E  2L+1 ) They estimates using of the transition rate for spherically symmetric proton orbitals for nuclei of radius r=r 0 A 1/3.

Weisskopf estimates  sp for 1Wu at A~100 and E  = 200 keV M1 2.2ps M2 4.1  s M3 36 s M4 43Ms E1 5.8fs E2 92 ns E3 0.2s E4 66Ms i.e., lowest multipole decays are favoured….but need to conserve angular momentum so need at least = I i -I f for decay to be allowed. Note, for low E  and high-l, internal conversion also competes/dominates.

The EM transition rate depends on E  2 +1,, the highest energy transitions for the lowest are (generally) favoured. This results in the preferential population of yrast and near-yrast states.

The EM transition rate depends on E  2 +1,, the highest energy transitions for the lowest are (generally) favoured. This results in the preferential population of yrast and near-yrast states.

The EM transition rate depends on E  2 +1,, the highest energy transitions for the lowest are (generally) favoured. This results in the preferential population of yrast and near-yrast states.

The EM transition rate depends on E  2 +1,, the highest energy transitions for the lowest are (generally) favoured. This results in the preferential population of yrast and near-yrast states.

The EM transition rate depends on E  2 +1,, the highest energy transitions for the lowest are (generally) favoured. This results in the preferential population of yrast and near-yrast states. = gamma-ray between yrast states

The EM transition rate depends on E  2 +1, (for E2 decays E  5 ) Thus, the highest energy transitions for the lowest are usually favoured. Non-yrast states decay to yrast ones (unless very different , K-isomers  =  ray from non-yrast state. =  ray between yrast states

The EM transition rate depends on E  2 +1, (for E2 decays E  5 ) Thus, the highest energy transitions for the lowest are usually favoured. Non-yrast states decay to yrast ones (unless very different , K-isomers  =  ray from non-yrast state. =  ray between yrast states

The EM transition rate depends on E  2 +1, (for E2 decays E  5 ) Thus, the highest energy transitions for the lowest are usually favoured. Non-yrast states decay to yrast ones (unless very different , K-isomers  =  ray from non-yrast state. =  ray between yrast states

Yrast Traps The yrast 8 + state lies lower in excitation energy than any 6 + state… i.e., would need a ‘negative’ gamma-ray energy to decay to any 6 + state

The yrast 8 + state can not decay to ANY 6 +. The lowest order multipole allowed is =4 I  =8 + → 4 + i.e., an E4 decay. Yrast Traps

Clusters of levels + Pauli Principle  magic numbers, inert cores Concept of valence nucleons – key to structure. Many-body  few-body: each body counts. Addition of 2 neutrons in a nucleus with 150 can drastically alter structure

Independent Particle Model Put nucleons (protons and neutrons separately) into orbits. Key question – how do we figure out the total angular momentum of a nucleus with more than one particle? Put 2j + 1 identical nucleons (fermions) in an orbit with angular momentum j. Each one MUST go into a different magnetic substate. Angular momenta add vectorially but projections (m values) add algebraically. So, total M is sum of m’s M = j + (j – 1) + (j – 2) + …+ 1/2 + (-1/2) + … + [ - (j – 2)] + [ - (j – 1)] + (-j) = 0 M = 0. S o, if the only possible M is 0, then J= 0 Thus, a full shell of nucleons always has total angular momentum 0. This simplifies things.

Podolyak et al., Phys. Lett. B672 (2009) 116 N=126 ; Z=79. Odd, single proton transition; h 11/2 → d 3/2 state (holes in Z=82 shell). Selection rule says lowest multipole decay allowed is =11/2 - 3/2 = 4. Change of parity means lowest must transition be M4. 1Wu 907 keV M4 in 205 Au has T 1/2 = 8secs. ‘Pure’ single particle (proton) transition from 11/2 - state to 3/2 + state. (note, decay here is observed following INTERNAL CONVERSION). These competing decays (to gamma emission) are often observed in isomeric decays

More complex nuclei… Signatures of nuclear structure help show us which regions of the nuclear chart are explained by ‘single-particle’ excitations or deformed regions (see Phil Walker’s lecture).

(40) 50 V= SHO + l 2.+ l.s. 82 1s 1/2 1p 3/2 1p 1/2 2s 1/2 3s 1/2 1d 5/2 1d 3/2 2d 3/2 2d 5/2 1g 7/2 1g 9/2 1h 11/2 1f 7/2 1f 5/2 2p 3/2 2p 1/2 2f 7/2 1h 9/2 1i 13/2 Why are E1 s isomeric? E1 single particle decays need to proceed between orbitals which have Delta L=1 and change parity, e.g., f 7/2 and d 5/2 or g 9/2 and f 7/2 or h 11/2 and g 9/2 or p 3/2 and d 5/2 What about typical 2-particle configs. e.g., I  =5 - from (h 11/2 ) -1 x (s 1/2 ) -1 I  =4 + from (d 3/2 ) - 1 x (s 1/2 ) -1

R(E(4 + ) / E(2 + )) Systematics plot from Burcu Cakirli

e.g., 128 Cd, isomeric 440 keV E1 decay. 1 Wu 440 keV E1 should have ~4x s; Actually has ~300 ns (i..e hindered by ~10 8

(40) 50 V= SHO + l 2.+ l.s. 82 1s 1/2 1p 3/2 1p 1/2 2s 1/2 3s 1/2 1d 5/2 1d 3/2 2d 3/2 2d 5/2 1g 7/2 1g 9/2 1h 11/2 1f 7/2 1f 5/2 2p 3/2 2p 1/2 2f 7/2 1h 9/2 1i 13/2 ASIDE: Why are E1 s isomeric? E1s often observed with decay probabilities Of →10 -9 Wu E1 single particle decays need to proceed between orbitals which have  l =1 and change parity, e.g., f 7/2 and d 5/2 or g 9/2 and f 7/2 or h 11/2 and g 9/2 or i 13/2 and h 11/2 or p 3/2 and d 5/2 BUT these orbitals are along way from each other in terms of energy in the mean-field single particle spectrum.

(40) 50 V= SHO + l 2.+ l.s. 82 1s 1/2 1p 3/2 1p 1/2 2s 1/2 3s 1/2 1d 5/2 1d 3/2 2d 3/2 2d 5/2 1g 7/2 1g 9/2 1h 11/2 1f 7/2 1f 5/2 2p 3/2 2p 1/2 2f 7/2 1h 9/2 1i 13/2 Why are E1 s isomeric? E1 single particle decays need to proceed between orbitals which have Delta L=1 and change parity, e.g., What about typical 2-particle configs. e.g., I  =5 - from mostly (h 11/2 ) -1 x (s 1/2 ) -1 I  =4 + from mostly (d 3/2 ) - 1 x (s 1/2 ) -1 No E1 ‘allowed’ between such orbitals. E1 occur due to (very) small fractions of the wavefunction from orbitals in higher shells. Small overlap wavefunction in multipole Matrix element causes ‘slow’ E1s

(40) 50 V= SHO + l 2.+ l.s. 82 1s 1/2 1p 3/2 1p 1/2 2s 1/2 3s 1/2 1d 5/2 1d 3/2 2d 3/2 2d 5/2 1g 7/2 1g 9/2 1h 11/2 1f 7/2 1f 5/2 2p 3/2 2p 1/2 2f 7/2 1h 9/2 1i 13/2 Why are E1 s isomeric? E1s often observed with decay probabilities Of →10 -8 Wu E1 single particle decays need to proceed between orbitals which have Delta L=1 and change parity, e.g., f 7/2 and d 5/2 or g 9/2 and f 7/2 or h 11/2 and g 9/2 or p 3/2 and d 5/2 BUT these orbitals are along way from each other in terms of energy in the mean-field single particle spectrum.

2 valence nucleon j 2 configurations in magic; magic nuclei

Seniority (spherical shell residual interaction) Isomers

Geometric Interpretation of the  residual interaction for j 2 configuration coupled to Spin J Use the cosine rule and recall that the magnitude of the spin vector of spin j = [ j (j+1) ] -1/2

 interaction gives nice simple geometric rationale for Seniority Isomers from  E ~ -V o F r tan (  / 2 ) for T=1, even J  180  E(j 2 J) 90  e.g. J   = (h 9/2 ) 2 coupled to 0 +, 2 +, 4 +, 6 + and 8 +.

 interaction gives nice simple geometric rationale for Seniority Isomers from  E ~ -V o F r tan (  / 2 ) for T=1, even J See e.g., Nuclear structure from a simple perspective, R.F. Casten Chap 4.)

Study the evolution of shell structure as a function of N:Z ratio. 208 Pb (Z=82, N=126) 132 Sn (Z=50, N=82) 56 Ni (Z=28, N=28) (Proton) holes in high-j intruders (f 7/2, g 9/2 and h 11/2 ) gives rise to ‘seniority isomers’ ‘below’ doubly magic shells. Expect 8+ and 10+ isomers in 130 Cd and 206 Hg.

g =  / I, can use ‘Schmidt model’ to give estimates for what the g-factors should be for pure spherical orbits. Can measure g directly from ‘twisting’ effect of putting magnetic dipole moment, , in a magnetic field, B. Nucleus precesses with the Larmor frequency,  L = g  N B

EM Selection Rules and their Effects on Decays Allows decays have: e.g., 102 Sn 52 Why do we only observe the E2 decays ? Are the other allowed decays present ?

EE E2 (1Wu) M3 (1Wu) E4 (1Wu) 48 (6 + →4 + ) 112  s 782,822 s2.5E+14s 555 (6 + →2 + ) 66,912s 497 (4 + →2 + ) 0.9ns61ms180,692s 1969 (4 + →2 + ) 751ms 102 Sn Conclusion, in general see a cascade of (stretched) E2 decays in near-magic even-even nuclei.

What about core breaking? We can have cases where low-energy (~100 keV) E2 decays competing with high-energy (~4 MeV) E4 transitions across magic shell closures, e.g. 54 Fe 28. Z=26; N=28 case. 2 proton holes in f 7/2 shell. Maximum spin in simple valence space is I  =6 +. i.e., (  f 7/2 ) -2 configuration coupled to I  = 6 + Additional spin requires exciting (pairs) of nucleons across the N or Z=28 shell closures into the f 5/2 shell. EE E2 (1Wu) M3 (1Wu) E4 (1Wu) 146 keV (10 + →8 + ) 1.01  s 613s20.9E+6s 3578 keV (10 + →6 + ) 6.5ms

(40) 50 V= SHO + l 2.+ l.s. 82 1s 1/2 1p 3/2 1p 1/2 2s 1/2 3s 1/2 1d 5/2 1d 3/2 2d 3/2 2d 5/2 1g 7/2 1g 9/2 1h 11/2 1f 7/2 1f 5/2 2p 3/2 2p 1/2 2f 7/2 1h 9/2 1i 13/2 Basic, independent particle model (with very simple residual interactions added, such as  - (contact) interaction) predicts large host of isomers in the vicinity of closed shells / magic numbers. Two categories 1)Spin-trap isomers - from particularly favoured coupling of (often high-j intruder) particles gives rise to high-spin state at low excitation energy. This state ‘has nowhere to decay to’ unless decays by high multipolarity (thus slow) transition. |J i +J f | >  J > |J i -J f | 2) Seniority isomers –  -interaction can demonstrate with geometric picture how (single) jn multiplet looks like j 2 multiplet. Small energy difference between J max and (J max -2) states cause ‘seniority isomers’.

Study the evolution of shell structure as a function of N:Z ratio. 208 Pb (Z=82, N=126) 132 Sn (Z=50, N=82) 56 Ni (Z=28, N=28) (Proton) holes in high-j intruders (f 7/2, g 9/2 and h 11/2 ) gives rise to ‘seniority isomers’ ‘below’ doubly magic shells. Expect 8+ and 10+ isomers in 130 Cd and 206 Hg.

What happens next? Q.How do you generate higher angular momentum states when the maximum spin that valence space is used up (i.e. j 2 coupled to J max = (j-1)) ? A. Break the valence core and excite nucleons across magic number gaps. This costs energy (can be ~3-4 MeV), but can result in large spin increases.

Information gathered from Passive Stopper RISING Stopped Beam (A~200) Within red line: nuclei populated measured using FRS + RISING with 1 GeV/u 208 Pb beam. 205 Au 204 Pt ? S.J. Steer et al., IJMP E18 (2009) 1002 N=126

Aside interest….is there N=126 shell quenching ? Assumption of a N=126 shell quenching leads to a considerable improvement in the global abundance fit in r-process calculations r-process abundances mass number A exp. pronounced shell gap shell structure quenched

S.J. Steer et al., Int. Jour. Mod. Phys. E18 (2009) 1002

204 Pt 126

Probing deeper into the N=126 shell closure: First structural information on 203 Ir (Z=77, N=126) S.J. Steer et al., Int. Jour. Mod. Phys. E18 (2009) 1002

Study the evolution of shell structure as a function of N:Z ratio. 208 Pb (Z=82, N=126) 132 Sn (Z=50, N=82) 56 Ni (Z=28, N=28) (Proton) holes in high-j intruders (f 7/2, g 9/2 and h 11/2 ) gives rise to ‘seniority isomers’ ‘below’ doubly magic shells. Expect 8+ and 10+ isomers in 130 Cd and 206 Hg.

Is there evidence for a N=82 shell quenching ? Assumption of a N=82 shell quenching leads to a considerable improvement in the global abundance fit in r-process calculations ! r-process abundances mass number A exp. pronounced shell gap shell structure quenched

The A~200, neutron-rich region of the nuclear chart before RISING Compiled using the ENSDF and XUNDL databases All of the indicated isomers have T 1/2 ~ 10 ns  1 ms 204 Pt Z = 82 >> >> N = 126

Submitted to PRL, Sep. 09