Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.

Slides:



Advertisements
Similar presentations
1 Measurement of the Gravitational Time Delay Using Drag-Free Spacecraft and an Optical Clock Neil Ashby, Dept. of Physics, UCB 390, University of Colorado,
Advertisements

High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Optical clocks, present and future fundamental physics tests
First Year Seminar: Strontium Project
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
1 Measurement of the Gravitational Time Delay Using Drag-Free Spacecraft and an Optical Clock Neil Ashby, Dept. of Physics, UCB 390, University of Colorado,
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Single-atom Optical Clocks— and Fundamental Constants Hg+ clock Brent Young Rob Rafac Sebastien Bize Windell Oskay Luca Lorini Anders Brusch Sarah Bickman.
Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University.
1S-2S transition frequency measurements in atomic hydrogen N. Kolachevsky MPQ.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Blackbody radiation shifts and magic wavelengths for atomic clock research IEEE-IFCS 2010, Newport Beach, CA June 2, 2010 Marianna Safronova 1, M.G. Kozlov.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
A Search for Temporal and Gravitational Variation of  in Atomic Dysprosium Variation of Constants & Violation of Symmetries, 24 July 2010 Arman Cingöz.
Optical Atomic Clocks for Space
FFK-14, Dubna, December 3, Higher-order constraints on precision of the time-frequency metrology of atoms in optical lattices V. D. Ovsiannikov.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
1 Fundamental Physics Tests using the LNE-SYRTE Clock Ensemble Rencontres de Moriond and GPhyS colloquium 2011 March 25 th 2011 La Thuile, Aosta valley,
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Substitute Lecturer: Jason Readle Thurs, Sept 17th, 2009
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
High resolution spectroscopy with a femtosecond laser frequency comb
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
-Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Status Report on Time and Frequency Activities at KRISS Taeg Yong Kwon Center for Time and Frequency, Division of Physical Metrology Korea Research Institute.
Agenda Brief overview of dilute ultra-cold gases
Laboratory Tests on Variations of Fundamental Constants Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
1 Frekvenčni standard in merjenje z optičnim glavnikom.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
Measurement Science Science et étalons
Activity reports on CCTF/CCL JWG on Optical Frequency Metrology
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Presentation transcript:

Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University of Colorado $ Funding $ ONR, NSF, AFOSR, NASA, DOE, NIST From Quantum to Cosmos July th, Strontium Optical Lattice Clock with high Accuracy and Stability

Feedback (accuracy) Optical Clock Components Optical comb Ultrastable laser Q = ν/Δν Δν ν Atom(s) Diddams et al., Science 293, 825 (2001). Ye et al., Phys. Rev. Lett. 87, (2001). Increase Q or S/N by 10  Decrease τ by 100 Clock Stability (Allan Deviation) Clock Accuracy Reduce environmental Effects (EM Fields)

8 cm Boyd et al. Science 314, (2006)Ludlow et al., Opt. Lett. 32, 641 (2007) Stable Local Oscillator: Sub Hz Lasers Diode Source Sub-Hz width Δ ν/ν~ 1x10 1s Drift < 1 Hz/s Insensitive to vibration RBW 333 mHz FWHM ~400 mHz ~330 mHz FWHM 2.1 Hz g

Optical Lattice Clock A Strontium-87 Optical Lattice Clock 689 nm  ~ 7.4 kHz Cooling 698 nm Clock Transition 87 Sr (I=9/2)  ~ 1 mHz 461 nm,  ~ 32 MHz Cooling (5s 2 ) 1 S 0 F=9/2 F=11/2 (5s5p) 1 P 1 F=7/2 F=9/2 3P13P1 3P03P0 F=11/2 F=7/2 F=9/2 Ultra-narrow 1 S P 0 clock transition Neutral atoms give large S/N Can be laser cooled to 1  K. All transitions accessible with diode lasers Field insensitive states Weak two-body atom interaction expected – small density shift Accessible magic wavelength (813 nm) Stability Estimate Δν = 1 Hz N = 10 6  10 1 s Loftus et al., Phys. Rev. Lett. 93, (2004).

Spectroscopy at the Magic Wavelength 1-D Lamb-Dicke Regime Ye et al. PRL 83, 4987 (1999) Katori et al. PRL 91, (2003) Ludlow et al., PRL 96, (2006) Sr, Yb, Ca, Mg, Hg, … 1S01S0 3P03P0

m F = -9/2m F = +9/2  Lock to spin-polarized sample  1st order Zeeman shift cancelled  Vector (axial) light shift cancelled  Tensor light shift absorbed into λ m Lock to Spin Polarized Samples mFmF photon scatter 3P13P1 3P03P0 3P23P2 1S01S0 π-polarized, F=9/2→F’=7/2 population

Clock Comparison: NIST Ca Clock 3 x s Ludlow et al., Science 319, 1805 (2008) Foreman et al., Rev. Sci. Instr. 78, (2007) Foreman et al., PRL 99, (2007) All optical comparison allows rapid evaluation

AC Stark shiftDensity ShiftZeeman Shift  To measure the systematic, the parameter of interest is varied every 100s.  Many pairs of data are then used to calculate the resulting shift and average down the final uncertainty. Uncertainty Evaluation: Optical Comparison

not listed: residual 1 st order Doppler, DC Stark Ludlow et al., Fortier et al. Science 319, 1805 (2008), Campbell et al., atom-ph/ v1 submitted to Metrologia

Density 1x10 11 /cm 3 p-wave, Temp-dependent Fermionic collisions (under investigation) s-wave, not identical inhomogen. excitation ? Collisions with Identical Fermions?

Collisions of “almost” Identical Fermions P-wave threshold ~ 30 mK, i.e., only S-P contribution: Temperature dependent Density 1x10 11 /cm 3

Collisions of “almost” Identical Fermions P-wave threshold ~ 30 mK, i.e., only S-P contribution:

Collisions of “almost” Identical Fermions P-wave threshold ~ 30 mK, i.e., only S-P contribution:

Inhomogeneous Excitation temperature

Controlling the Density Shift  Inhomogeneity:  large number of motional states occupied by the atoms.  Measured by looking at the dephasing of Rabi oscillations.  As the temperature of the atomic cloud is decreased, a smaller number of motional states are occupied, leading to better contrast in the Rabi oscillations

Decreasing the Density Shift  Preliminary results: More homogeneous excitation  Lower density shift!

International Effort (Sr vs. Cs) 0 : 429,228,004,229,800 Hz Coming Soon : PTB, NPL, LENS, NICT… Last two JILA points agree to better than 5x Last JILA and Paris points agree to better than 5x Sr Clock now accepted as secondary standard by BIPM!!!

Sr Frequency Variation over 2.5 yr Linear Drift Sinusoidal amplitude Ye, JILA Lemonde, LNE-SYRTE Katori, Univ. Tokyo  constrains linear drift of fundamental constants  constrains coupling coefficients to gravitational potential

Sr Frequency Variation over 2.5 yr Linear Drift Ye, JILA Lemonde, LNE-SYRTE Katori, Univ. Tokyo  constrains linear drift of fundamental constants

Constraints on Gravitational Coupling Tests linear model: Sr: JILA, SYRTE, U. Tokyo Hg + : NIST H-Maser: NIST V. V. Flambaum, Int. J. Mod. Phys. A 22, 4937 (2007) Blatt et al., PRL 100, (2008)

Acknowledgments Absolute Frequency Measurement S. Diddams T. Heavner L. Hollberg S. Jefferts T. Parker J. Levine Optical Carrier Transfer S. Foreman J. Bergquist S. Diddams J. Stalnaker Optical evaluation of Sr Z. Barber S. Diddams T. Fortier L. Hollberg N. D. Lemke C. Oates N. Poli J. Stalnaker Ultracold Collisions K. Gibble S. Kokkelmans P. Julienne P. Naidon

m F = -9/2m F = +9/2  Lock to spin-polarized sample  1st order Zeeman shift cancelled  Vector (axial) light shift cancelled  Tensor light shift absorbed into λ m Pushing Forward: Spin Polarized Samples mFmF photon scatter 3P13P1 3P03P0 3P23P2 1S01S0 π-polarized, F=9/2→F’=7/2 population

Controlling the Density Shift

Uncertainty Evaluation: Optical Comparison not listed: residual 1 st order Doppler, DC Stark Ludlow et al., Fortier et al. Science 319, 1805 (2008), Campbell et al., atom-ph/ v1 submitted to Metrologia

Non-Zero collision Shift Shift: -8.9(0.9)x  0 =1 x cm -3 Small collision shift possibly due to spectator atoms m F = -9/2m F = +9/2

Optical Clock Constraints on Linear Drifts Linear Fit to gives H/Cs: MPQ Sr/Cs: JILA, SYRTE, U. Tokyo Yb + /Cs: PTB Hg + /Cs: NIST Blatt et al., PRL 100, (2008) (Al + /Hg + : NIST)