Virtual Source Imaging vs Interferometric Imaging Gerard T. Schuster, Andrey Bakulin and Rodney Calvert.

Slides:



Advertisements
Similar presentations
Time-reversal acoustics, virtual source imaging, and seismic interferometry Haijiang Zhang University of Science and Technology of China.
Advertisements

Seismic Interferometry
Geological Model Depth(km) X(km) 2001 Year.
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008.
Local Reverse Time Migration with VSP Green’s Functions Xiang Xiao UTAM, Univ. of Utah May 1, 2008 PhD Defense 99 pages.
Surface Wave Prediction and Subtraction by Interferometry + Deconvolution Yanwei Xue Feb. 7, 2008.
Interferometric Interpolation of 3D OBS Data Weiping Cao, University of Utah Oct
Finite-Frequency Resolution Limits of Traveltime Tomography for Smoothly Varying Velocity Models Jianming Sheng and Gerard T. Schuster University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Reduced-Time Migration of Converted Waves David Sheley and Gerard T. Schuster University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
Interferometric Prediction and Least Squares Subtraction of Surface Waves Shuqian Dong and Ruiqing He University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Migration and Attenuation of Surface-Related and Interbed Multiple Reflections Zhiyong Jiang University of Utah April 21, 2006.
Salt Flank Delineation by Interferometric Imaging of Transmitted P-to-S Waves Xiang Xiao Advisor: Gerard T. Schuster Committee: Michael Zhdanov Bob Smith.
1 Interferometric Interpolation and Extrapolation of Sparse OBS and SSP Data Shuqian Dong and G.T.Schuster.
Kirchhoff vs Crosscorrelation
Wavelet Extraction using Seismic Interferometry C. Boonyasiriwat and S. Dong November 15, 2007.
Autocorrelogram Migration of Drill-Bit Data Jianhua Yu, Lew Katz, Fred Followill, and Gerard T. Schuster.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.
Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Jianming Sheng University of Utah Feb.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
Crosscorrelation Migration of Free-Surface Multiples in CDP Data Jianming Sheng University of Utah February, 2001.
Imaging Every Bounce in a Multiple G. Schuster, J. Yu, R. He U of Utah.
Interferometric Multiple Migration of UPRC Data
Theory of acoustic daylight imaging revisited
1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.
Autocorrelogram Migration for Field Data Generated by A Horizontal Drill-bit Source Jianhua Yu, Lew Katz Fred Followill and Gerard T. Schuster.
Crosscorrelation Migration of Free-Surface Multiples in RVSP Data Jianming Sheng University of Utah February, 2001.
Demonstration of Super-Resolution and Super-Stacking Properties of Time Reversal Mirrors in Locating Seismic Sources Weiping Cao, Gerard T. Schuster, Ge.
Multisource Least-squares Reverse Time Migration Wei Dai.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
Seeing the Invisible with Seismic Interferometry: Datuming and Migration Gerard T. Schuster, Jianhua Yu, Xiao Xiang and Jianming Sheng University of Utah.
Impact of MD on AVO Inversion
1 Local Reverse Time Migration: Salt Flank Imaging by PS Waves Xiang Xiao and Scott Leaney 1 1 Schlumberger UTAM, Univ. of Utah Feb. 8, 2008.
Multiples Waveform Inversion
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Green function retrieval versus Interferometric imaging Kees Wapenaar Deyan Draganov Delft University of Technology 2005 Joint Assembly May 25, 2005 New.
Velocity Estimation of Friendswood’s Weathering Zone using Fermat’s Interferometric Principle By Chaiwoot Boonyasiriwat University of Utah.
Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy Weiping Cao Gerard T. Schuster October 2009.
LEAST SQUARES DATUMING AND SURFACE WAVES PREDICTION WITH INTERFEROMETRY Yanwei Xue Department of Geology & Geophysics University of Utah 1.
Super-virtual Interferometric Diffractions as Guide Stars Wei Dai 1, Tong Fei 2, Yi Luo 2 and Gerard T. Schuster 1 1 KAUST 2 Saudi Aramco Feb 9, 2012.
Interferometric Traveltime Tomography M. Zhou & G.T. Schuster Geology and Geophysics Department University of Utah.
G. Schuster, S. Hanafy, and Y. Huang, Extracting 200 Hz Information from 50 Hz Data KAUST Rayleigh Resolution ProfileSuperresolution Profile Sinc function.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
1.1 Seismic Interferometry Optical interferometry.
The Earth’s Near Surface as a Vibroseis Signal Generator Zhiyong Jiang University of Utah.
Jianhua Yu University of Utah Robust Imaging for RVSP Data with Static Errors.
Shuqian Dong and Sherif M. Hanafy February 2009 Interpolation and Extrapolation of 2D OBS Data Using Interferometry.
Interpolating and Extrapolating Marine Data with Interferometry
ABSTRACT –Basic Principles and applications
Making Marchenko imaging work with field data and the bumpy road to 3D
Reverse Time Migration
Primary-Only Imaging Condition And Interferometric Migration
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Seismic Interferometry
Overview of Multisource and Multiscale Seismic Inversion
Overview of Multisource and Multiscale Seismic Inversion
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Seismic Interferometry and 3x3 Classification Matrix
Super-virtual Refraction Interferometry: Theory
Wave Equation Dispersion Inversion of Guided P-Waves (WDG)
Presentation transcript:

Virtual Source Imaging vs Interferometric Imaging Gerard T. Schuster, Andrey Bakulin and Rodney Calvert

Outline Data Illustration Summary Theory

D(s’|s) s U(g’|s’) s’g’ U(g’|s) = G(g’|s’) D(s’|s)ds’ Greens Thm: Every pt along well acts as a secondary source Greens Function for s & g in well u = Dg u =[D*D] D*g G(g’|s’) ~ U(g’|s)D(s’|s)*ds Redatumed data for s & g in well W D(s’|s) g D*u (g, M,s)= d( g |s) d(M|s)* s,s

Outline Data Illustration Summary Theory

Time (s) Depth (ft) Raw Data(CRG15) D(s’|s) U(g’|s) G(g’|s’) ~ U(g’|s)D(s’|s)*ds G(g’|s’)

Outline Data Illustration Summary Theory

Summary VSP Direct VSP Ghost u = Dg U(g’|s) = G(g’|s’) D(s’|s)ds’ 1. CDP Refl. g =[D*D] D*u 2. G(g’|s’) [D*D] ~ 1/W Interferometry Redatuming [D*D] ~ 1/D Virtual Source Readtuming

Time (s) Depth (ft) Ghosts

Time (s) Depth (ft) Exxon Raw Data(CRG15)

Time (s) Depth (ft) Ghosts (Exxon) D(g’|s)

Time (s) Depth (ft) Primary(Exxon)

524 Trace No. Time (s) xcorr data (muted) Time (s) Trace No. Exxon CSG 25 Raw data (muted) Master trace

Depth (ft) X (ft) Xcorr. mig

Uninteresting Part of Medium of Medium Specular Reflection Time Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction s min(T – T) = -T s Diffraction T TT

Uninteresting Part of Medium of Medium Specular Reflection Time Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction s min(T – T) = -T s Diffraction T TT

Uninteresting Part of Medium of Medium Specular Reflection Time Diffraction Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction min(T – T) = -T s s

Uninteresting Part of Medium of Medium Specular Reflection Time Diffraction Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction min(T – T) = -T s s

Uninteresting Part of Medium of Medium Time Minimum Time Difference = Specular Reflection Time Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction min(T – T) = -T s

Uninteresting Part of Medium of Medium Time Fermat’s Principle: T+T – T >0 T – T > -T ghostdiffraction min(T – T) = -T s

Summary1. Fermat’s Principle: min(T – T) = -T 2. No need to know velocity model or source location. 3. VSP Data  CDP Data + Tomography+Mig. 4. Redatums buried sources to surface

Outline Target Oriented Fermat’s Interferometric Principle Fermat’s Interferometric Principle Numerical Example Interferometry Background

Uninteresting Part of Medium of Medium VSP Tomostatics Problem: From VSP Data Find Full Coverage Velocity Tomogram

Uninteresting Part of Medium of Medium VSP Tomostatics Problem: From VSP Data Find Full Coverage Velocity Tomogram

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For VSP Multiple Tomography m 0 m 3.5 km/s 1.4 km/s Weathering zone VSP Data: 120 shots on surface, 120 receivers in well Goal: Determine weathering zone velocity by interferometric tomography

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 0 m 3.5 km/s 1.4 km/s Weathering zone min(T – T) = T TT

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 0 s s Time (s) Ghost Reflection min(T – T) = T Depth (m)

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 0 s s Time (s) Ghost Reflection Primary Reflection min(T – T) = T = Depth (m) X (m)

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 0 s s 3.5 km/s 1.4 km/s Time (s) Ghost Reflection Primary Reflection Interfer. Reflection min(T – T) = T Depth (m) X (m)

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 1.35 km/s Velocity (km/s) 1.65 km/s Actual Interferometric min(T – T) = T

VSP Summary TT direct prim gggggggg sgsgsgsg - T > - mult sg min( ) g VSP  CDP traveltimes 3.Removes rec. statics & multiple tomo. Tcdp(s,g) =min[min( Tdirect(g,:) - Tmult(s,:) )] s g TTTg g

Outline Target Oriented Fermat’s Interferometric Principle Fermat’s Interferometric Principle Numerical Example Interferometry Background

Uninteresting Part of Medium of Medium Specular Reflection Fermat’s Principle: T+T – T >0 ghostdiffraction s Diffraction

Uninteresting Part of Medium of Medium Specular Reflection Fermat’s Principle: T+T – T >0 reflectiondiffraction s Diffraction Target Oriented Interferometric Tomography

Acknowledgments UTAM sponsors Exxon for 2-D field data J. Claerbout + J. Rickett II evolved from daylight imaging

Earthquake Data typically Use Direct Waves => Tomography Uninteresting Part of Medium of Medium Time Direct Direct Problem: Uninteresting Parts of Medium Distort Tomogram Goal: Transform Traveltimes into Primary Reflection Traveltimes Specular Reflection Basin

Uninteresting Part of Medium of Medium Direct Specular Reflection Time Goal: Transform Traveltimes into Primary Reflection Traveltimes

Fermat’s Principle: T - T > 0 multmultsgsg = When is there equality? Fermat’s Interferometric Principle For Multiple Tomography m 0 s s 3.5 km/s 1.4 km/s Time (s) Ghost Reflection Primary Reflection Interfer. Reflection min(T – T) = T

CDP Summary TT prim prim sgsgsgsg gggggggg - T > - mult sg min( ) s Extend CDP sources laterally 3.Removes 1/3 statics & multiple tomo. Tdatum(gp,g) =min[min( Tprim(:,gp) + Tmult(:,g) )] s g g TTT

Uninteresting Part of Medium of Medium Specular Reflection Fermat’s Principle: T+T – T >0 reflectiondiffraction s Diffraction