1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.

Slides:



Advertisements
Similar presentations
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
Advertisements

1 Outline r Principles of network applications m App architectures m App requirements r Web and HTTP m Objects vs. root files m Persistent, pipelining,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
CPSC 441: FTP & SMTP1 Application Layer: FTP & Instructor: Carey Williamson Office: ICT Class.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
Electronic Mail and SMTP
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
1 Review of Previous Lecture r Principles of network applications m App architectures m App requirements r Web and HTTP m Non-persistent & persistent Pipeling.
Internet and Intranet Protocols and Applications Lecture 3: Application Layer 2: , DNS and P2P February 1, 2005 Arthur Goldberg Computer Science Department.
Esimerkki: Sähköposti. Lappeenranta University of Technology / JP, PH, AH Electronic Mail Three major components: user agents mail servers simple mail.
Simple Mail Transfer Protocol
Introduction 1 Lecture 7 Application Layer (FTP, ) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Mail Server Fitri Setyorini. Content SMTP POP3 How mail server works IMAP.
Electronic Mail Three major components: SMTP user agents mail servers
Introduction 1-1 Chapter 2 FTP & Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
DNS & P2P A PPLICATIONS د. عـــادل يوسف أبو القاسم.
Domain Name System (DNS)
SMTP, POP3, IMAP.
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP,
CSE401N: Computer Networks Lecture-5 Electronic Mail S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Review: –How do we address “a network end-point”? –What services are provided by the Internet? –What is the network logical topology observed by a network.
Application Layer Protocols Simple Mail Transfer Protocol.
DNS,SMTP,MIME.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
DNS: Domain Name System
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
File Transfer Protocol (FTP)
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Slides based on Carey Williamson’s: FTP & SMTP1 File Transfer Protocol (FTP) r FTP client contacts FTP server at port 21, specifying TCP as transport protocol.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Spring 2006 CPE : Application Layer_ 1 Special Topics in Computer Engineering Application layer: Some of these Slides are Based on Slides.
Last time Finish HTTP FTP.
Introduction to Networks
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
No Class on Friday There will be NO class on: FRIDAY 1/27/17
Review of Previous Lecture
Chapter 2: Application layer
Chapter 2: Application layer
CSE 4213: Computer Networks II
DNS: Domain Name System
FTP, SMTP and DNS 2: Application Layer.
Presentation transcript:

1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing

2 Electronic Mail Three major components: r user agents r mail servers r simple mail transfer protocol: SMTP User Agent r a.k.a. “mail reader” r composing, editing, reading mail messages r e.g., Eudora, Outlook, elm, Netscape Messenger r outgoing, incoming messages stored on server user mailbox outgoing message queue mail server user agent user agent user agent mail server user agent user agent mail server user agent SMTP

3 Electronic Mail: mail servers Mail Servers r mailbox contains incoming messages for user r message queue of outgoing (to be sent) mail messages r SMTP protocol between mail servers to send messages m client: sending mail server m “server”: receiving mail server mail server user agent user agent user agent mail server user agent user agent mail server user agent SMTP

4 Scenario: Alice sends message to Bob 1) Alice uses UA to compose message and “to” 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message user agent mail server mail server user agent

5 Try SMTP interaction for yourself:  telnet servername 25 r see 220 reply from server r enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands above lets you send without using client (reader)

6 SMTP: final words r SMTP uses persistent connections r SMTP requires message (header & body) to be in 7- bit ASCII  SMTP server uses CRLF.CRLF to determine end of message Comparison with HTTP: r HTTP: pull r SMTP: push r both have ASCII command/response interaction, status codes r HTTP: each object encapsulated in its own response msg r SMTP: multiple objects sent in multipart msg

7 Mail message format SMTP: protocol for exchanging msgs RFC 822: standard for text message format: r header lines, e.g., m To: m From: m Subject: different from SMTP commands! r body m the “message”, ASCII characters only header body blank line

8 Message format: multimedia extensions r MIME: multimedia mail extension, RFC 2045, 2056 r additional lines in msg header declare MIME content type From: To: Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data base64 encoded data multimedia data type, subtype, parameter declaration method used to encode data MIME version encoded data

9 Mail access protocols r SMTP: delivery/storage to receiver’s server r Mail access protocol: retrieval from server m POP: Post Office Protocol [RFC 1939] authorization (agent server) and download m IMAP: Internet Mail Access Protocol [RFC 1730] more features (more complex) manipulation of stored msgs on server m HTTP: Hotmail, Yahoo! Mail, etc. user agent sender’s mail server user agent SMTP access protocol receiver’s mail server

10 POP3 protocol authorization phase r client commands:  user: declare username  pass: password r server responses m +OK  -ERR transaction phase, client:  list: list message numbers  retr: retrieve message by number  dele: delete r quit C: list S: S: S:. C: retr 1 S: S:. C: dele 1 C: retr 2 S: S:. C: dele 2 C: quit S: +OK POP3 server signing off S: +OK POP3 server ready C: user bob S: +OK C: pass hungry S: +OK user successfully logged on

11 Outline r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing

12 DNS: Domain Name System People: many identifiers: m SSN, name, passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., ww.yahoo.com - used by humans Q: map between IP addresses and name ? Domain Name System: r distributed database implemented in hierarchy of many name servers r application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) m note: core Internet function, implemented as application-layer protocol m complexity at network’s “edge”

13 DNS Why not centralize DNS? r single point of failure r traffic volume r distant centralized database r maintenance doesn’t scale! DNS services r Hostname to IP address translation r Host aliasing m Canonical and alias names r Mail server aliasing r Load distribution m Replicated Web servers: set of IP addresses for one canonical name

14 Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers Distributed, Hierarchical Database Client wants IP for 1 st approx: r Client queries a root server to find com DNS server r Client queries com DNS server to get amazon.com DNS server r Client queries amazon.com DNS server to get IP address for

15 DNS: Root name servers r contacted by local name server that can not resolve name r root name server: m contacts authoritative name server if name mapping not known m gets mapping m returns mapping to local name server 13 root name servers worldwide b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 17 other locations) i Autonomica, Stockholm (plus 3 other locations) k RIPE London (also Amsterdam, Frankfurt) m WIDE Tokyo a Verisign, Dulles, VA c Cogent, Herndon, VA (also Los Angeles) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 11 locations)

16 TLD and Authoritative Servers r Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp. m Network solutions maintains servers for com TLD m Educause for edu TLD r Authoritative DNS servers: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web and mail). m Can be maintained by organization or service provider

17 Local Name Server r Does not strictly belong to hierarchy r Each ISP (residential ISP, company, university) has one. m Also called “default name server” r When a host makes a DNS query, query is sent to its local DNS server m Acts as a proxy, forwards query into hierarchy.

18 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server Example r Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

19 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 Recursive queries recursive query: r puts burden of name resolution on contacted name server r heavy load? iterated query: r contacted server replies with name of server to contact r “I don’t know this name, but ask this server”

20 DNS: caching and updating records r once (any) name server learns mapping, it caches mapping m cache entries timeout (disappear) after some time m TLD servers typically cached in local name servers Thus root name servers not often visited r update/notify mechanisms under design by IETF m RFC 2136 m

21 DNS records DNS: distributed db storing resource records (RR) r Type=NS  name is domain (e.g. foo.com)  value is IP address of authoritative name server for this domain RR format: (name, value, type, ttl) r Type=A  name is hostname  value is IP address r Type=CNAME  name is alias name for some “cannonical” (the real) name is really servereast.backup2.ibm.com  value is cannonical name r Type=MX  value is name of mailserver associated with name

22 DNS protocol, messages DNS protocol : query and reply messages, both with same message format msg header r identification: 16 bit # for query, reply to query uses same # r flags: m query or reply m recursion desired m recursion available m reply is authoritative

23 DNS protocol, messages Name, type fields for a query RRs in reponse to query records for authoritative servers additional “helpful” info that may be used

24 Outline r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing

25 P2P file sharing Example r Alice runs P2P client application on her notebook computer r Intermittently connects to Internet; gets new IP address for each connection r Asks for “Hey Jude” r Application displays other peers that have copy of Hey Jude. r Alice chooses one of the peers, Bob. r File is copied from Bob’s PC to Alice’s notebook: HTTP r While Alice downloads, other users uploading from Alice. r Alice’s peer is both a Web client and a transient Web server. All peers are servers = highly scalable!

26 P2P: centralized directory original “Napster” design 1) when peer connects, it informs central server: m IP address m content 2) Alice queries for “Hey Jude” 3) Alice requests file from Bob centralized directory server peers Alice Bob

27 P2P: problems with centralized directory r Single point of failure r Performance bottleneck r Copyright infringement file transfer is decentralized, but locating content is highly centralized

28 Query flooding: Gnutella r fully distributed m no central server r public domain protocol r many Gnutella clients implementing protocol overlay network: graph r edge between peer X and Y if there’s a TCP connection r all active peers and edges is overlay net r Edge is not a physical link r Given peer will typically be connected with < 10 overlay neighbors

29 Gnutella: protocol Query QueryHit Query QueryHit Query QueryHit File transfer: HTTP r Query message sent over existing TCP connections r peers forward Query message r QueryHit sent over reverse path Scalability: limited scope flooding

30 Gnutella: Peer joining 1. Joining peer X must find some other peer in Gnutella network: use list of candidate peers 2. X sequentially attempts to make TCP with peers on list until connection setup with Y 3. X sends Ping message to Y; Y forwards Ping message. 4. All peers receiving Ping message respond with Pong message 5. X receives many Pong messages. It can then setup additional TCP connections

31 Exploiting heterogeneity: KaZaA r Each peer is either a group leader or assigned to a group leader. m TCP connection between peer and its group leader. m TCP connections between some pairs of group leaders. r Group leader tracks the content in all its children.

32 KaZaA: Querying r Each file has a hash and a descriptor r Client sends keyword query to its group leader r Group leader responds with matches: m For each match: metadata, hash, IP address r If group leader forwards query to other group leaders, they respond with matches r Client then selects files for downloading m HTTP requests using hash as identifier sent to peers holding desired file