Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Dark Matter, Dark Energy, and the Current State of Cosmology
That other pesky 95% Dark Energy and Dark Matter Prof. Lawrence Wiencke Department of Physics Engineering Colorado School of Mines Nov
Objectives: 1. relate the cosmological principle to isotropy and homgeneity of the universe. 2. understand how Hubble’s law is used to map the universe,
Dark Energy. Conclusions from Hubble’s Law The universe is expanding Space itself is expanding Galaxies are held together by gravity on “small” distance.
Parameterizing the Age of the Universe The Age of Things: Sticks, Stones and the Universe
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
The Evidence for the Big Bang Student Resource Sheet 5 Science and Religion in Schools: Unit 4a.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
What is Dark Energy? Josh Frieman Fermilab and the University of Chicago.
19 The Big Bang Evidence The Science of Creation.
Concluding Comments For the Course Cosmology Fascinating Past Highly accomplished present (for example, the material covered in this course). Really exciting.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
No Structure on Largest Scales (Galaxies distributed fairly uniformly)‏ Surprising given structure on smaller scales Cosmological Principle: Universe is.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
The Big Bang: Fact or Fiction? The Big Bang Fact or fiction? Dr Cormac O’Raifeartaigh.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
Progress on Cosmology Sarah Bridle University College London.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
The Big Bang Astrophysics Lesson 18. Learning Objectives To know:-  What is the big bang theory  What is the evidence supporting it including:-  Cosmological.
Theory on the Formation of the Universe
Yi Mao, MIT Collaborators: Max Tegmark, Alan Guth, Matias Zaldarriaga, Matt McQuinn, Oliver Zahn, Tom Faulkner, Ted Bunn, Serkan Cabi Constraining cosmological.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
The Revolution for the Rest of Us George Musser 6 October 2006.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Science and Creationism 2. Cosmology © Colin Frayn,
University of Pennsylvania Licia Verde The cosmic connection From WMAP web site.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Large-Scale Structure & Surveys Max Tegmark, MIT.
The Beginning of Time: Evidence for the Big Bang & the Theory of Inflation.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Cosmology -- the Origin and Structure of the Universe Cosmological Principle – the Universe appears the same from all directions. There is no preferred.
Homework for today was WORKBOOK EXERCISE: “Expansion of the Universe” (pg in workbook)
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Cosmology -- the Origin and Structure of the Universe Cosmological Principle – the Universe appears the same from all directions. There is no preferred.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
The Big Bang: Fact or Fiction? The Big Bang vs the Steady State A new perspective? Dr Cormac O’Raifeartaigh.
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
Option D. 3. Universe was born around 13.8 billion years ago in process called Big Bang In the beginning, all matter & energy in the entire universe was.
Cosmology. Olbers’s Paradox The Universe may be infinite – if it is, why is the night sky dark?
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Cosmology -- the Origin and Structure of the Universe
Harrison B. Prosper Florida State University YSP
The Science of Creation
The Science of Creation
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The History of the Universe in 60 Minutes
Ch. 14 Cosmology (or “The Whole Enchilada”)
The Science of Creation
The Beginning of Time (Birth Of The Universe)
Cosmology: SNC 1D.
Cosmology from Large Scale Structure Surveys
Homework #10 is due tonight, 9:00 pm.
Cosmology: The Origin and Evolution of the Universe
CMB Anisotropy 이준호 류주영 박시헌.
Presentation transcript:

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow

COSMOLOGY BASICS Max Tegmark, MIT

Midsummer holiday, Leksand, Sweden

Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania Where I was born and raised

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Who are you?

The cosmic plan: Overview of cosmology theory & observation - 0th order: cosmic expansion history - 1st order: cosmic clustering history - Observational tools: supernovae, CMB, galaxy clustering,. clusters, lensing, Ly  forest, etc - Cosmological parameters Revolutions on the horizon: - Nature of dark energy How will the Universe end? Will it? - Nature of dark matter What is the Universe made of? - Nature of our early universe How did the Universe begin? Did it? - String theory? Multiverse? - 21 cm tomography Sarah Church Sean Carroll, Phil Marshall Neal Weiner Sean Carroll L1: L2:

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 THE COSMIC SM Ö RG Å SBORD Galaxy surveys Microwave background Gravitational lensing Big Bang nucleosynthesis Supernovae Ia Galaxy clusters Lyman  forest Neutral hydrogen tomography

What have we learned?

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 OUR PLACE IN SPACE

DSE

SDSS movie

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 OUR PLACE IN TIME

The sky as a time machine

Dark energy evidence (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Brief History of our Universe 400 Dark matter creation? Antimatter annihilation Creation of atomic nuclei

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Formation movies

Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions   (z), G(z,k), P s (k), P t (k) H(z) (Graphics from Gary Hinshaw/WMAP team)

Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy H(z) P(k,z) To 1st order: (Graphics from Gary Hinshaw/WMAP team)

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Higher order: gastrophysics 0th order: a(t) 1st order: g(z,k) (Figure courtesy of COBE team)

Measuring Expansion: Standardizable candles Standardizable rods Standardizable clocks a(t) H(z) 0th order: (More on this in the lectures of Sean Carroll & Phil Marshall)

100dpi Figure from WMAP team

100dpi Distant light is -dimmed -redshifted

100dpi Distant light is -dimmed -redshifted Redshift Dimming

100dpi Distant light is -dimmed -redshifted Redshift Dimming Standard candles, rulers or clocks

Boom zoom Standardizable candles (From Saul Perlmutter’s web site)

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom Cosmic strings Open universe Inflation with  Inflation without  Using CMB blobs as a standardizable ruler: Guth & Kaiser 2005 (Science) + WMAP3

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom Using galaxy correlations as a standardizable ruler: Easiest to understand in real space (Bashinsky & Bertschinger, PRL, 87, 1301, 2001; PRD , 2002) (Eisenstein, Hu & MT 1998; Eisenstein et al 2005; Cole et al 2005)

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom We’ve measured distance to z=0.35 to 5% accuracy (Eisenstein et al 2005, for the SDSS collaboration astro-ph/050112) Updates in Reid et al , Percival et al , Kazin et al 2009 in prep

Big Bang nucleosynthesis as a standardizable clock: George Gamow

Kirkman et al 2003, astro-ph/ Big Bang nucleosynthesis as a standardizable clock: George Gamow

Tytler et al 2000, astro-ph/ Big Bang nucleosynthesis as a standardizable clock:

SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, H = dlna/dt, H 2   Assumes k=0 a = 1/(1+z)

Inflationary gravitational waves as a standardizable clock: Q t ~ H/m planck

SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, H = dlna/dt, H 2   Assumes k=0 Vanilla rules OK! What we’ve learned about H(z) from SN Ia, CMB, BAO, BBN, etc:

Riess et al, astro-ph/ What we’ve learned about H(z) from SN Ia

curvature: consistent with vanilla (k = 0) topology: consistent with vanilla

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, st order: measuring clustering

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom z = 1000

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001 z = 0

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies LSS

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies LSS Clusters CMB Tegmark & Zaldarriaga, astro-ph/ updates (More from Sarah Church)

History (Figure from Wayne Hu) (Figure from WMAP team)

History

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

Why are there any CMB fluctuations at all?

Why the wiggles? What’s their scale?

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom Cosmic strings Open universe Inflation with  Inflation without  Using CMB blobs as a standardizable ruler: Guth & Kaiser 2005 (Science) + WMAP3 3

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies LSS Clusters CMB Tegmark & Zaldarriaga, astro-ph/ updates

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Boom zoom Lyman Alpha Forest Simulation: Cen et al 2001 You Quasar Ly  F

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 Chema movie

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 GRAVITATIONAL LENSING: A1689 imaged by Hubble ACS, Broadhurst et al 2004

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 distorti on Lensing

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 But the best is yet to come… Precision, 21cm tomography, …

LSS Our observable universe

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, DO ANY OF THESE QUESTIONS CONFUSE YOU? 1. What is the Universe expanding into? 2. How can stuff be more than 14 billion light years away when the Universe is only 14 billion light years old? 3. Where in space did the Big Bang explosion happen? 4. Did the Big Bang happen at a single point? 5. How could a the Big Bang create an infinite space in a finite time? 6. How could space not be infinite? 7. If the Universe is only 10 billion years old, how can we see objects that are now 30 billion light years away? 8. Don’t galaxies receeding faster than c violate relativity theory? 9. Are galaxies really moving away from us, or is space just expanding? 10. Is the Milky Way expanding? 11. Do we have evidence for a Big Bang singularity? 12. What came before the Big Bang? 13.Should I feel insignificant?

Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 END OF LECTURE I