Lecture 181 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.

Slides:



Advertisements
Similar presentations
Lecture 131 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Advertisements

Chapter 4 Modelling and Analysis for Process Control
Applications of Laplace Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C.
EEE 302 Electrical Networks II
Lecture 161 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 141 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 11 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 31 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
LectR2EEE 2021 Exam #2 Review Dr. Holbert March 26, 2008.
Lecture 241 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 71 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 121 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lect15EEE 2021 Systems Concepts Dr. Holbert March 19, 2008.
The Laplace Transform in Circuit Analysis
Lecture 16: Continuous-Time Transfer Functions
Lecture 81 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 201 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 231 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 41 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 17. System Response II
EE-2027 SaS, L15 1/15 Lecture 15: Continuous-Time Transfer Functions 6 Transfer Function of Continuous-Time Systems (3 lectures): Transfer function, frequency.
Lecture 14: Laplace Transform Properties
Lecture 61 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lect20EEE 2021 Spectrum Representations; Frequency Response Dr. Holbert April 14, 2008.
LectRFEEE 2021 Final Exam Review Dr. Holbert April 28, 2008.
Lecture 21 Network Function and s-domain Analysis Hung-yi Lee.
Lecture 101 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 191 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 211 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 51 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 151 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 171 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Out response, Poles, and Zeros
Network Functions Definition, examples , and general property
University of Khartoum -Signals and Systems- Lecture 11
APPLICATION OF THE LAPLACE TRANSFORM
Complex Waveforms as Input Lecture 19 1 When complex waveforms are used as inputs to the circuit (for example, as a voltage source), then we (1) must Laplace.
THE LAPLACE TRANSFORM IN CIRCUIT ANALYSIS. A Resistor in the s Domain R + v i v=Ri (Ohm’s Law). V(s)=RI(s R + V I.
Chapter 4 Interconnect Analysis. Organization 4.1 Linear System 4.2 Elmore Delay 4.3 Moment Matching and Model Order Reduction –AWE –PRIMA 4.4 Recent.
Lec 3. System Modeling Transfer Function Model
CHAPTER 4 Laplace Transform.
CHAPTER 4 Laplace Transform.
Fundamentals of Electric Circuits Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
10. Laplace TransforM Technique
Lecture 4: Electrical Circuits
1 Alexander-Sadiku Fundamentals of Electric Circuits Chapter 16 Applications of the Laplace Transform Copyright © The McGraw-Hill Companies, Inc. Permission.
Ch. 8 Analysis of Continuous- Time Systems by Use of the Transfer Function.
G(s) Input (sinusoid) Time Output Ti me InputOutput A linear, time-invariant single input and single output (SISO) system. The input to this system is.
AC Circuit Analysis.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Dr. Tamer Samy Gaafar Lec. 2 Transfer Functions & Block Diagrams.
1 Lecture #18 EGR 272 – Circuit Theory II Transfer Functions (Network Functions) A transfer function, H(s), can be used to describe a system or circuit.
Lecture 5\6 Analysis in the time domain (I) —First-order system North China Electric Power University Sun Hairong.
CONTROL SYSTEM UNIT - 6 UNIT - 6 Datta Meghe Institute of engineering Technology and Research Sawangi (meghe),Wardha 1 DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION.
ELECTRIC CIRCUITS EIGHTH EDITION
ELECTRIC CIRCUITS EIGHTH EDITION JAMES W. NILSSON & SUSAN A. RIEDEL.
H(s) 8.b Laplace Transform:
Lesson 12: Transfer Functions In The Laplace Domain
Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback
DEPT.:-ELECTRONICS AND COMMUNICATION SUB: - CIRCUIT & NETWORK
Transfer Functions.
Time Response Analysis
Feedback Control Systems (FCS)
Fundamentals of Electric Circuits Chapter 16
Energy Conversion and Transport George G. Karady & Keith Holbert
Feedback: Principles & Analysis
Frequency Response Method
Example 1: Find the magnitude and phase angle of
Chapter 2. Mathematical Foundation
Transfer Function and Stability of LTI Systems
Presentation transcript:

Lecture 181 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001

Lecture 182 Complex Waveforms as Input When complex waveforms are used as inputs to the circuit (for example, as a voltage source), then we (1) must Laplace transform the inputs (2) determine the transfer function (3) feed the input through the transfer function The transfer function, H(s), is the ratio of some output variable to some input variable

Lecture 183 Class Example Extension Exercise E14.7

Lecture 184 Transfer Function The transfer function, H(s), is All initial conditions are zero (makes transformation step easy) Can use transfer function to find output to an arbitrary input Y(s) = H(s) X(s) The impulse response is the inverse Laplace transform of transfer function h(t) = L -1 [H(s)] with knowledge of the transfer function or impulse response, we can find response of circuit to any input

Lecture 185 Class Example Extension Exercise E14.8

Lecture 186 Pole/Zero (Plot) Poles directly indicate the system transient response characteristics; consider poles from a 2nd order system: For a pole-zero plot place "X" for poles and "0" for zeros using real-imaginary axes Poles in the right half plane signify an unstable system

Lecture 187 Class Example Extension Exercise E14.9

Lecture 188 Steady State Response Given an input of the form x(t)=X M cos(ω 0 t+θ), the steady-state response is where  (j  ) is the phase angle of the transfer function, that is,  H(j  )

Lecture 189 Class Example Extension Exercise E14.10