Materials 286K Class 05. The Hubard model and magnetism On the insulating side of the M–I transition, magnetism of some sort (usually.

Slides:



Advertisements
Similar presentations
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
Advertisements

La1–xCaxMnO3; Saturation magnetization at 90 K.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
MAT286K Lars Bjaalie The rare-earth titanates (RTiO3)
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
How transition metal, anion, and structure affect the operating potential of an electrode Megan Butala June 2, 2014.
Electronic Structure and Transport Properties of Iron Compounds: Spin-Crossover Effects. Viktor Struzhkin.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Materials 286K Special Topics in Inorganic Materials: Non-metal to Metal Transitions 1.Purpose of this course 2.Counting electrons.
Perovskite-type transition metal oxide interfaces
Materials 286K Class 08. LnNiO 3 LaNiO 3 and LaCuO 3 are some of the few (undoped) metals.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Electronic structure of La2-xSrxCuO4 calculated by the
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Interplay between spin, charge, lattice and orbital degrees of freedom
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Materials 286K Class 14, 4d and 5d Going from 3d to 4d, we expect broader bands, and for 5d, relativistic effects. The changes in.
A Molecular Carbonyl Metal Cluster CO ligand shell A Spherical Capacitor Metal core.
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
Quick and Dirty Introduction to Mott Insulators
Materials 286K Class 02. The Peierls distortion seen in 1D chains: The simplest model for a gap. Note that we go from being valence-imprecise.
Transition Metal Complex Bonding and Spectroscopy Review
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
The Ising Model of Ferromagnetism by Lukasz Koscielski Chem 444 Fall 2006.
How Does Electricity Flow? Electricity & Magnetism Science Instructor: Miss Aartman.
Magnetic transition in the Kondo lattice system CeRhSn2
La 2 CuO 4 insulator gap, AF structure and pseudogaps from spin-space entangled orbitals in the HF scheme Alejandro Cabo-Bizet, CEADEN, Havana, Cuba
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
High-temperature series expansion study Kok-Kwei Pan ( 潘國貴 ) Physics Group, Center of General Education Chang Gung University ( 長庚大學 ) No. 259, Wen-Hua.
Materials 286KChris Freeze. M—I Transition In Rare-Earth Nickelates And The Impact Of Structural Distortions Outline: LaNiO 3 : The basics Tuning the.
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
An Introduction to Fe-based superconductors
Materials 286K Class 12, Experimental techniques: Resistivity Ultrathin Bi films. “The onset of superconductivity in homogeneous.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Intraatomic vs Interatomic Interactions John B. Goodenough (University of Texas at Austin) DMR Intellectual Merit Localized electrons have stronger.
Electrostatics #5 Capacitance. Capacitance I. Define capacitance and a capacitor: Capacitance is defined as the ability of an object to store charge.
Materials 286K Class 13, Local structure and structural effects in cuprates Right: (La,M) 2 CuO 4 superconducting T c : Composition.
Temperature Sensing Temperature Bar Graph Project National Electronics Museum November 12, 2011 National Electronics Museum.
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Materials 286K Class 10, Oxide superconductors Li 1–x Ti 2+x O 4 Johnston, Prakash, Zachariasen, Viswanathan, MRS Bulletin 8 (1973)
Superconductivity and magnetism in iron-based superconductor
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Oxide Heterostructure
Non-metal to Metal Transitions
Ionic Compounds Involving Transition Metals
THE BIGGER PICTURE - TRENDS IN REAL SYSTEMS
Oxidation-Reduction Reactions “Redox”
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Ab initio calculation of magnetic exchange parameters
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Materials 286K Class 05. The Hubard model and magnetism On the insulating side of the M–I transition, magnetism of some sort (usually antiferromagnetism) manifests.

Materials 286K Class 05. The Hubard model and magnetism In the limit that U >> t, the Hubbard model: Can be reduced to the Heisenberg Hamiltonian: where

Materials 286K Class 05. The Hubard model and magnetism [will return to these !] The example of LnNiO 3, Ln = La, Pr, Nd, Sm: Torrance, Lacorre, Nazzal, Ansaldo, Niedermayer, Phys. Rev. B. 45 (1992) 8209–8212.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram The position of transition metal d-states vs. anion p states: Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55 (1985) 418–421.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram The actual diagram. Note that T is what we have been calling W, and W is proportional to t in the Hubbard Model. Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55 (1985) 418–421.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram A simplified view: In the language of ZSA: Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55 (1985) 418–421. lower Hubbard upper Hubbard U Mott-Hubbard insulators: lower Hubbard upper Hubbard  Charge-transfer insulators: anion p states

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram Examples of Mott-Hubbard: V 2 O 3, Ti 2 O 3, Cr 2 O 3 and most halides. Early transition metals, and lower oxidation states. Interestingly, these do display T-dependent M–I transitions. Examples of Charge-transfer: CuO, NiCl 2, NiS, etc. Later transition metals and higher oxidation states. CuO and NiCl 2 are always insulating. Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55 (1985) 418–421.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram. Periodic trends Zaanen, Sawatzky, Allen, Phys. Rev. Lett. 55 (1985) 418–421.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram and perovskites Optical studies of band gaps: Distinguishing d–d and p–d character: Arima, Tokura, Torrance, Phys. Rev. B. 48 (1993) 17006–17009.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram and perovskites

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram and batteries The transition metal d and anion p levels manifest in Li-battery electrochemistry. Hayner, Zhao, Kung, Annu. Rev. Chem. Biomolec. Eng. 3 (2012) 445–471.

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram and redox competition Ideas of Goodenough, Rouxel etc. M 4+ M 2+

Materials 286K Class 05. The Zaanen-Sawatzky-Allen phase diagram and redox competition