Set Theory.

Slides:



Advertisements
Similar presentations
Sets and its element A set is a collection of well-defined and well-distinguished objects. The objects that make up a set are called the members or elements.
Advertisements

Introduction to Set Theory
Week 21 Basic Set Theory A set is a collection of elements. Use capital letters, A, B, C to denotes sets and small letters a 1, a 2, … to denote the elements.
Sets DISCRETE STRUCTURE ABDUL BASIT TAHIR, KAMRAN ALI, FAIZAN ILLAHI, NOMAN AHMAD, ARSALAN MUBASHIR.
Analytical Methods in CS (CIS 505)
Sets Definition of a Set: NAME = {list of elements or description of elements} i.e. B = {1,2,3} or C = {x  Z + | -4 < x < 4} Axiom of Extension: A set.
Chapter 2 The Basic Concepts of Set Theory
Sets 1.
Sets 1.
Chapter 2 The Basic Concepts of Set Theory © 2008 Pearson Addison-Wesley. All rights reserved.
1 Learning Objectives for Section 7.2 Sets After today’s lesson, you should be able to Identify and use set properties and set notation. Perform set operations.
Mathematics.
Survey of Mathematical Ideas Math 100 Chapter 2 John Rosson Thursday January 25, 2007.
2.1 – Symbols and Terminology Definitions: Set: A collection of objects. Elements: The objects that belong to the set. Set Designations (3 types): Word.
SET Miss.Namthip Meemag Wattanothaipayap School. Definition of Set Set is a collection of objects, things or symbols. There is no precise definition for.
This section will discuss the symbolism and concepts of set theory
Set theory Sets: Powerful tool in computer science to solve real world problems. A set is a collection of distinct objects called elements. Traditionally,
Chapter 3 – Set Theory  .
MTH 231 Section 2.1 Sets and Operations on Sets. Overview The notion of a set (a collection of objects) is introduced in this chapter as the primary way.
Definition and Representation A set is a well-defined collection of objects; The objects are called elements or members of the set; A set can be represented.
Set, Combinatorics, Probability & Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Set,
SET THEORY. BASIC CONCEPTS IN SET THEORY Definition: A set is a collection of well-defined objects, called elements Examples: The following are examples.
CS 103 Discrete Structures Lecture 10 Basic Structures: Sets (1)
1 ENM 503 Block 1 Algebraic Systems Lesson 2 – The Algebra of Sets The Essence of Sets What are they?
Copyright © 2014 Curt Hill Sets Introduction to Set Theory.
College Algebra & Trigonometry Asian College of Aeronautics AVT 1.
CS201: Data Structures and Discrete Mathematics I
Chapter 2: Basic Structures: Sets, Functions, Sequences, and Sums (1)
Thinking Mathematically Chapter 2 Set Theory 2.1 Basic Set Concepts.
Slide Chapter 2 Sets. Slide Set Concepts.
Chapter 2 Section 1 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Unit 2 Sets.
ELEMENTARY SET THEORY.
Chapter SETS DEFINITION OF SET METHODS FOR SPECIFYING SET SUBSETS VENN DIAGRAM SET IDENTITIES SET OPERATIONS.
Module Code MA1032N: Logic Lecture for Week Autumn.
Set Notation and Description Kinds of Sets Operations on Sets By: Mr. Gerzon B. Mascariñas.
CSNB143 – Discrete Structure Topic 1 - Set. Topic 1 - Sets Learning Outcomes – Student should be able to identify sets and its important components. –
1 Chapter Two Basic Concepts of Set Theory –Symbols and Terminology –Venn Diagrams and Subsets.
Discrete Mathematics Lecture # 10. Set Theory  A well defined collection of {distinct} objects is called a set.  The objects are called the elements.
Sets Definition: A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a.
Discrete Mathematics Set.
Welcome to Form 4 Mathematics Topic for the day SETS.
Module #3 - Sets 3/2/2016(c) , Michael P. Frank 2. Sets and Set Operations.
Fr: Discrete Mathematics by Washburn, Marlowe, and Ryan.
Chapter 7 Sets and Probability Section 7.1 Sets What is a Set? A set is a well-defined collection of objects in which it is possible to determine whether.
Section 6.1 Set and Set Operations. Set: A set is a collection of objects/elements. Ex. A = {w, a, r, d} Sets are often named with capital letters. Order.
The set of whole numbers less than 7 is {1, 2, 3, 4, 5, 6}
Sets Page 746.
Lesson 2.1 Basic Set Concepts.
Chapter two Theory of sets
Sets Finite 7-1.
Set Definition: A set is unordered collection of objects.
CHAPTER 3 SETS, BOOLEAN ALGEBRA & LOGIC CIRCUITS
CSNB 143 Discrete Mathematical Structures
The Basic Concepts of Set Theory
ALGEBRA II H/G - SETS : UNION and INTERSECTION
(є:belongs to , є:does not belongs to)
Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from “Discrete.
CS100: Discrete structures
        { } Sets and Venn Diagrams Prime Numbers Even Numbers
The Basic Concepts of Set Theory
2.1 Sets Dr. Halimah Alshehri.
Chapter 2 The Basic Concepts of Set Theory
Sets. EXAMPLE 1 The set O of odd positive integers less than 10 can be expressed by O = { l, 3, 5, 7, 9}. * This way of describing a set is known as.
ALGEBRA I - SETS : UNION and INTERSECTION
Chapter 2 The Basic Concepts of Set Theory
Chapter 7 Logic, Sets, and Counting
ALGEBRA II H/G - SETS : UNION and INTERSECTION
2.1 – Symbols and Terminology
Presentation transcript:

Set Theory

Set Notation Set- is a collection or aggregate of definite, distinct objects. A well-defined set means that it is possible to determine whether an object belongs to a given set. Elements of a Set- the objects or members of a set. Symbol: ϵ (epsilon)- use to denote the element of a set. Ex: r ϵ A ϵ – use to denote that an element is not an element of the given set. Ex: b ϵ A

Set Notation Ex. of well-defined sets (defined) Set of ace cards Colors of the rainbow Days of the week Ex. of not well-defined sets (undefined) Set of cards Set of books Set of beautiful women in Asia

Set Notation Different symbols are used when dealing with sets: A pair of braces { } – is used to represent the idea of a set. Capital letters of the English alphabet – are used to name sets. Example: A = { a, b, c, d, e } B = { 2, 4, 6, 8, 10 } Letters with subscripts can also be used, e.g. A1, A2, A3,…etc.

Methods of Listing the Elements of a Set 1. Roster or Tabular Method – listing all the elements, enclosed it in braces and separated by comma. Ex: C = { a, b, c } B = { 1, 2, 3, 4, 5 } Rule Method – a conditional way of listing method by writing and description using a particular variable. Set Builder Notation – a modification of the rule method.

Methods of Listing the Elements of a Set Examples: The symbol ( / ) means “wherein” or “such that.” Rule Set-builder 1. A = { counting numbers less than 5} A = { x/x is a counting number less than 5 } 2. B = { days of the week that begin with letter S } B = { d/d is a day of the week beginning with letter S }

Cardinality Refers to the number of elements contained in a set. Symbol: n(A) or |A| Examples: A = {a, b, c, d} Ans: |A| = 4 Z = {x/x is a set of integers} Ans: n(Z) = ∞ or |Z| = ∞

Kinds of Sets

Subset Subset – it is a part of a given set. Let A and B be sets. B is a subset of A if each element of B is an element of A. In symbols: B ⊂ A or B ⊆ A read as “B is a subset of A.” Two kinds of subset: Proper Subset – a part of a set, symbol ( ⊂ ) Improper (Strict) Subset – the given set is equal to that set, symbol ( ⊆ )

Subset Example: Let P = {5, 6, 7, 8, 9, 10} Q = {5, 7, 9} R = {5, 9, 10} S = {1, 2} True or False Q ⊆ P R ⊂ P P ⊂ Q S ⊂ P R ⊂ Q Q ⊆ Q

Super set If B ⊆ A, then A is a super set of B. In symbols: A ⊇ B read as “A is a superset of B.” Examples: 1. A ⊇ B 2. R ⊇ Q ⊇ Z A B

Kinds of Sets Empty or Null Set – sets having no elements. Symbol: { } or ∅ Note: An empty set is a subset of any set. Universal Set (U) – also called the general set, is the sum of all sets or the totality of elements under consideration or a particular discussion. Example: U = {a, b, c, d, x, y, z} A = {a, b, c, d} B = {x, y, z}

Kinds of Sets Unit Set – set having only one element. Ex: D = {y/y is a day of the week that begins with letter M} Finite Set – sets having a limited or countable number of elements. Ex: set of counting numbers less than 5 set of colors of the rainbow Infinite Set – sets having an unlimited or uncountable number of elements. Ex: set of counting numbers

Kinds of Sets Equal Sets – sets having the same elements. Symbol: (=) Note: Two sets A and B are said to be equal if and only if A ⊆ B and B ⊆ A. Ex: A = {2, 4, 6} and B = {4, 6, 2} A = B and B = A Equivalent Sets – sets having the same number of elements or cardinality, that is |A| = |B| . Symbol: (~) Ex: X = {1, 2, 3} Y = {a, b, c} |X| = |Y|, so X ~ Y and Y ~ X

Kinds of Sets Joint Sets – sets that have elements in common. Ex: M = {5, 6, 7, 8} and N = {4, 6, 7, 9} are joint sets. Disjoint Sets – sets that have no elements in common. They are mutually exclusive. Ex: C = {c, a, t} and D = {d, o, g} are disjoint sets or mutually exclusive.

Power Set Examples: What is the power set of O = {a, b, c}? If A is a set, the power set of A is the set of all subsets of A denoted by: P(A) = {X/X ⊆ A} Number of Subsets of a Given Set: - If a set contains n number of elements then the number of subsets is 2ⁿ Examples: What is the power set of O = {a, b, c}? If B = {1, 2}, describe P(B). What is P(ø)?

Venn Diagram It is a graphical representation, usually circular in nature. It is one way of showing the relationships of two or more sets by the use of pictures. This method was developed by John Venn (1834-1883) thus, the name Venn Diagram. It consists of a rectangle representing the universal set and circles that represent the sets. Sometimes, circles can also represent the universal set.

Venn Diagram U A B a, b, c d, e, f

Set Operations Union – it shows the unity of two or more sets. It is the joining of sets. ( ∪ ) In symbols: A ∪ B = {x/x ϵ A v x ϵ B} Examples: Find the union of sets and draw Venn diagrams a) A = {1, 2, 3} B = {4, 5, 6} b) S = {a, b, c, d} T = {c, d, m, n, o}

Set Operations Intersection – it shows the intersection of the common elements of sets. ( ∩ ) In symbols: A ∩ B = {x/x ϵ A ʌ x ϵ B} Example: Find the intersection of sets and draw the Venn diagram. a) B = {m, o, p, q} C = {m, p, r, s} b) F = {1, 3, 5, 7} G = {2, 4, 6, 8}

Set Operations Complement of a Set – it is the set whose elements are in the universal set but not in a set or a given set. ( ʼ ) In symbols: A’ = {x ϵ U / x ϵ A} Ex: Let U be the universal set. U = {2, 4, 6, 8,10} A = {6, 8, 10} B = {2, 4, 6} Find: a) A’ b) B’

Set Operations Relative Difference – set of elements found in a set but not belong or found in other set. ( – ) In symbols: A – B = {x/x ϵ A ʌ x ϵ B} Ex: P = {1, 2, 3, 4, 5} Q = {3, 4, 5, 6, 7} Find: a) A – B b) B – A Symmetric Difference – the symmetric difference of A and B is denoted by: A  B = (A – B) U (B – A) Ex: A = {a, e, i, o, u} B = {e, o, n, s} Find: A  B

Set Operations Cartesian Product – For any sets A and B, the Cartesian product A x B is the set of all ordered pairs (a, b) where a ϵ A and b ϵ B. A x B is defined by: A x B = {(a, b) / a ϵ A ʌ b ϵ B} Examples: Let A = {0, 1} B = {x, y, z} Find: a) A x B b) B x A c) A2

Exercises Given: Let U be the universal set U = {a, b, c, d, e, f, g, h} A = (a, b, c} C = {a, g, h} B = {d, e, f} D = { b, c, d, e, f} Find the ff. and draw Venn diagrams. 1) A’ ∩ B’ 6) P(A) 2) (A U B)’ 7) B x C 3) (C’ ∩ D) U A 8) A – C 4) (A ∩ B)’ 9) D – B 5) A’ U B’ 10) A  D

Applications of Set Theory Examples In a class, 15 are taking English, 20 are taking Filipino and 10 are taking both English and Filipino. How many students are there in all? Of 1000 applicants for a mountain-climbing trip in the Himalayas, 450 get altitude sickness, 622 are not in good enough shape, and 30 have allergies. An applicant qualifies if and only if this applicant does not get altitude sickness, is in good shape, and does not have allergies. If there are 111 applicants who get altitude sickness and are not in good enough shape, 14 who get altitude sickness and have allergies, 18 who are not in good enough shape and have allergies, and 9 who get altitude sickness, are not in good enough shape, and have allergies, how many applicants qualify?

Do Worksheet 6