Image Morphing, Triangulation CSE399b, Spring 07 Computer Vision.

Slides:



Advertisements
Similar presentations
Planar graphs Algorithms and Networks. Planar graphs2 Can be drawn on the plane without crossings Plane graph: planar graph, given together with an embedding.
Advertisements

Efficient access to TIN Regular square grid TIN Efficient access to TIN Let q := (x, y) be a point. We want to estimate an elevation at a point q: 1. should.
 Distance Problems: › Post Office Problem › Nearest Neighbors and Closest Pair › Largest Empty and Smallest Enclosing Circle  Sub graphs of Delaunay.
Morphing & Warping 2D Morphing Involves 2 steps 1.Image warping “get features to line up” 2.Cross-dissolve “mix colors” (fade-in/fadeout transition)
Computational Geometry II Brian Chen Rice University Computer Science.
Morphing CSE 590 Computational Photography Tamara Berg.
Ruslana Mys Delaunay Triangulation Delaunay Triangulation (DT)  Introduction  Delaunay-Voronoi based method  Algorithms to compute the convex hull 
By Groysman Maxim. Let S be a set of sites in the plane. Each point in the plane is influenced by each point of S. We would like to decompose the plane.
3/5/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Delaunay Triangulations II Carola Wenk Based on: Computational.
Discrete Geometry Tutorial 2 1
2D preobrazba (morphing). 2D preobrazba dekle-tiger.
CSE554ContouringSlide 1 CSE 554 Lecture 4: Contouring Fall 2013.
2. Voronoi Diagram 2.1 Definiton Given a finite set S of points in the plane , each point X of  defines a subset S X of S consisting of the points of.
3. Delaunay triangulation
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
By Eyal Dushkin [Ed] Chapter 1. I. Introduction Reminder – Voronoi Diagrams  Let S be a set of sites in the plane.  Each point in the plane.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Chapter 5: Voronoi Diagrams Wednesday,
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Appearance Models Shape models represent shape variation Eigen-models can represent texture variation Combined appearance models represent both.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2004 Chapter 5: Voronoi Diagrams Monday, 2/23/04.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Center for Graphics and Geometric Computing, Technion 1 Computational Geometry Chapter 9 Delaunay Triangulation.
Image Morphing : Rendering and Image Processing Alexei Efros.
Computational Photography Image Warping/Morphing Jinxiang Chai.
Image Morphing : Computational Photography Alexei Efros, CMU, Fall 2005 © Alexey Tikhonov.
Computing the Delaunay Triangulation By Nacha Chavez Math 870 Computational Geometry; Ch.9; de Berg, van Kreveld, Overmars, Schwarzkopf By Nacha Chavez.
Camera Calibration CS485/685 Computer Vision Prof. Bebis.
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Image warping/morphing Digital Video Special Effects Fall /10/17 with slides by Y.Y. Chuang,Richard Szeliski, Steve Seitz and Alexei Efros.
Image Morphing, Thin-Plate Spline Model CSE399b, Spring 07 Computer Vision
Delaunay Triangulations Presented by Glenn Eguchi Computational Geometry October 11, 2001.
Image Morphing CSC320: Introduction to Visual Computing
CSCE 441: Computer Graphics Image Warping/Morphing Jinxiang Chai.
Voronoi diagrams and applications Prof. Ramin Zabih
CS 551/651 Advanced Computer Graphics Warping and Morphing Spring 2002.
Image Warping / Morphing
Geometric Operations and Morphing.
Global Parametrization of Range Image Sets Nico Pietroni, Marco Tarini, Olga Sorkine, Denis Zorin.
Computational Photography Derek Hoiem, University of Illinois
Image Morphing Computational Photography Derek Hoiem, University of Illinois 10/02/12 Many slides from Alyosha Efros.
Image Warping and Morphing cs195g: Computational Photography James Hays, Brown, Spring 2010 © Alexey Tikhonov.
Advanced Multimedia Warping & Morphing Tamara Berg.
CS559: Computer Graphics Lecture 8: Warping, Morphing, 3D Transformation Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Image Morphing ( Computational Photography) Jehee Lee Seoul National University With a lot of slides stolen from Alexei Efros and Seungyong Lee.
L8 - Delaunay triangulation L8 – Delaunay triangulation NGEN06(TEK230) – Algorithms in Geographical Information Systems.
Image Morphing Computational Photography Derek Hoiem, University of Illinois 9/29/15 Many slides from Alyosha Efros.
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
Image Warping and Morphing : Computational Photography Alexei Efros, CMU, Fall 2011 © Alexey Tikhonov.
Image Warping and Morphing © Alexey Tikhonov CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015.
Multimedia Programming 10: Image Morphing
CS559: Computer Graphics Lecture 9: 3D Transformation and Projection Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
CS559: Computer Graphics Lecture 7: Image Warping and Panorama Li Zhang Spring 2008 Most slides borrowed from Yungyu ChuangYungyu Chuang.
CS559: Computer Graphics Lecture 7: Image Warping and Morphing Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
1 Schnyder’s Method. 2 Motivation Given a planar graph, we want to embed it in a grid We want the grid to be relatively small And we want an efficient.
Processing Images and Video for An Impressionist Effect Automatic production of “painterly” animations from video clips. Extending existing algorithms.
Image warping/morphing Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/15 with slides by Richard Szeliski, Steve Seitz and Alexei Efros.
Opportunities in Map-Making Alan Saalfeld. April 20-22, 2007Computational and Conformal Geometry2 Cartographers can make maps that: Preserve all angles.
CMPS 3130/6130 Computational Geometry Spring 2017
Algorithms and Networks
Image Morphing © Zooface Many slides from Alexei Efros, Berkeley.
Jeremy Bolton, PhD Assistant Teaching Professor
Computational Photography Derek Hoiem, University of Illinois
Computational Photography Derek Hoiem, University of Illinois
Image Warping and Morphing
The Art Gallery Problem
Quantum Foundations Lecture 3
Computer Graphics: Image Warping/Morphing
Image Morphing using mesh warp and feature based warp
Presentation transcript:

Image Morphing, Triangulation CSE399b, Spring 07 Computer Vision

Lecture notes borrowed from A. Efros, T. Cootes Image morphing :

Morphing = Object Averaging The aim is to find “an average” between two objects Not an average of two images of objects… …but an image of the average object! How can we make a smooth transition in time? –Do a “weighted average” over time t How do we know what the average object looks like? We haven’t a clue! But we can often fake something reasonable –Usually required user/artist input

P Q v = Q - P P + 0.5v = P + 0.5(Q – P) = 0.5P Q P + 1.5v = P + 1.5(Q – P) = -0.5P Q (extrapolation) Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b = 1 So aP+bQ = aP+(1-a)Q Averaging Points P and Q can be anything: points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole images (m-by-n D)… etc. What’s the average of P and Q?

Idea #1: Cross-Dissolve Interpolate whole images: Image halfway = (1-t)*Image 1 + t*image 2 This is called cross-dissolve in film industry But what is the images are not aligned?

Idea #2: Align, then cross-disolve Align first, then cross-dissolve Alignment using global warp – picture still valid

Dog Averaging What to do? Cross-dissolve doesn’t work Global alignment doesn’t work –Cannot be done with a global transformation (e.g. affine) Any ideas? Feature matching! Nose to nose, tail to tail, etc. This is a local (non-parametric) warp

Idea #3: Local warp, then cross-dissolve Morphing procedure: for every t, 1.Find the average shape (the “mean dog” ) local warping 2.Find the average color Cross-dissolve the warped images

Local (non-parametric) Image Warping Need to specify a more detailed warp function Global warps were functions of a few (2,4,8) parameters Non-parametric warps u(x,y) and v(x,y) can be defined independently for every single location x,y! Once we know vector field u,v we can easily warp each pixel (use backward warping with interpolation)

Image Warping – non-parametric Move control points to specify a spline warp Spline produces a smooth vector field

Warp specification - dense How can we specify the warp? Specify corresponding spline control points interpolate to a complete warping function But we want to specify only a few points, not a grid

Warp specification - sparse How can we specify the warp? Specify corresponding points interpolate to a complete warping function How do we do it? How do we go from feature points to pixels?

Triangular Mesh 1.Input correspondences at key feature points 2.Define a triangular mesh over the points Same mesh in both images! Now we have triangle-to-triangle correspondences 3.Warp each triangle separately from source to destination How do we warp a triangle? 3 points = affine warp! Just like texture mapping

Triangulations A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points. There are an exponential number of triangulations of a point set.

An O(n 3 ) Triangulation Algorithm Repeat until impossible: Select two sites. If the edge connecting them does not intersect previous edges, keep it.

“Quality” Triangulations Let  (T) = (  1,  2,..,  3t ) be the vector of angles in the triangulation T in increasing order. A triangulation T 1 will be “better” than T 2 if  (T 1 ) >  (T 2 ) lexicographically. The Delaunay triangulation is the “best” Maximizes smallest angles goodbad

Boris Nikolaevich Delaunay (March 15, 1890 – July 17, 1980) Delaunay bad

Improving a Triangulation In any convex quadrangle, an edge flip is possible. If this flip improves the triangulation locally, it also improves the global triangulation. If an edge flip improves the triangulation, the first edge is called illegal.

Illegal Edges Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices. Proof: By Thales’ theorem. Theorem: A Delaunay triangulation does not contain illegal edges. Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites. Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular. p q

Naïve Delaunay Algorithm Start with an arbitrary triangulation. Flip any illegal edge until no more exist. Could take a long time to terminate.

Delaunay Triangulation by Duality General position assumption: There are no four co-circular points. Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram. Corollary: The DT may be constructed in O(nlogn) time. This is what Matlab’s delaunay function uses.

Image Morphing We know how to warp one image into the other, but how do we create a morphing sequence? 1.Create an intermediate shape (by interpolation) 2.Warp both images towards it 3.Cross-dissolve the colors in the newly warped images

Warp interpolation How do we create an intermediate warp at time t? Assume t = [0,1] Simple linear interpolation of each feature pair (1-t)*p1+t*p0 for corresponding features p0 and p1

Triangular Mesh 1.Input correspondences at key feature points 2.Define a triangular mesh over the points Same mesh in both images! Now we have triangle-to-triangle correspondences 3.Warp each triangle separately from source to destination How do we warp a triangle? 3 points = affine warp! Just like texture mapping

Warping texture Problem: Given corresponding points in two images, how do we warp one into the other? Two common solutions 1.Piece-wise linear using triangle mesh 2.Thin-plate spline interpolation

Interpolation using Triangles Region of interest enclosed by triangles. Moving nodes changes each triangle Just need to map regions between two triangles ),( :points Control ii yx )','( :points Warped ii yx

Barycentric Co-ordinates 10 and 10 if triangle the inside is  âá x How do we know if a point is inside of a triangle?

Barycentric Co-ordinates Three linear equations in 3 unknowns

Interpolation using Triangles To find out where each pixel in new image comes from in old image Determine which triangle it is in Compute its barycentric co-ordinates Find equivalent point in equivalent triangle in original image Only well defined in region of `convex hull’ of control points

Thin-Plate Spline Interpolation Define a smooth mapping function (x’,y’)=f(x,y) such that It maps each point (x,y) onto (x’,y’) and does something smooth in between. Defined everywhere, even outside convex hull of control points

Thin-Plate Spline Interpolation Function has form

Building Texture Models For each example, extract texture vector Normalise vectors (as for eigenfaces) Build eigen-model Texture, g Warp to mean shape

Other Issues Beware of folding You are probably trying to do something 3D-ish Morphing can be generalized into 3D If you have 3D data, that is! Extrapolation can sometimes produce interesting effects Caricatures

Dynamic Scene