Computer System Overview Chapter 1. Basic computer structure CPU Memory memory bus I/O bus diskNet interface.

Slides:



Advertisements
Similar presentations
Computer System Overview
Advertisements

Chapter 6 Computer Architecture
CSCI 4717/5717 Computer Architecture
Informationsteknologi Thursday, September 6, 2007Computer Systems/Operating Systems - Class 21 Today’s class Finish computer system overview Review of.
Chapter 1 Computer System Overview Patricia Roy Manatee Community College, Venice, FL ©2008, Prentice Hall Operating Systems: Internals and Design Principles,
1 Lecture 2: Review of Computer Organization Operating System Spring 2007.
Computer System Overview
1 Computer System Overview OS-1 Course AA
1 Process Description and Control Chapter 3. 2 Process Management—Fundamental task of an OS The OS is responsible for: Allocation of resources to processes.
1 CSIT431 Introduction to Operating Systems Welcome to CSIT431 Introduction to Operating Systems In this course we learn about the design and structure.
Computer System Overview
University College Cork IRELAND Hardware Concepts An understanding of computer hardware is a vital prerequisite for the study of operating systems.
Chapter 1 and 2 Computer System and Operating System Overview
Adapted from slides ©2005 Silberschatz, Galvin, and Gagne and Stallings Lecture 2: Computer Systems Overview.
Midterm Tuesday October 23 Covers Chapters 3 through 6 - Buses, Clocks, Timing, Edge Triggering, Level Triggering - Cache Memory Systems - Internal Memory.
Chapter 1 and 2 Computer System and Operating System Overview
1 Computer System Overview Chapter 1 Review of basic hardware concepts.
CS-334: Computer Architecture
COSC 4P13 Operating Systems : Design and Implementation.
1 Computer System Overview Let’s figure out what’s inside this thing...
Chapter 1 Computer System Overview Patricia Roy Manatee Community College, Venice, FL ©2008, Prentice Hall Operating Systems: Internals and Design Principles,
Computer Systems Overview. Page 2 W. Stallings: Operating Systems: Internals and Design, ©2001 Operating System Exploits the hardware resources of one.
1 Computer System Overview Chapter 1. 2 n An Operating System makes the computing power available to users by controlling the hardware n Let us review.
Computer System Overview Chapter 1. Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users.
Chapter 1 Computer System Overview Dave Bremer Otago Polytechnic, N.Z. ©2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William.
Chapter 1 Computer System Overview
CHAPTER 3 TOP LEVEL VIEW OF COMPUTER FUNCTION AND INTERCONNECTION
Recall: Three I/O Methods Synchronous: Wait for I/O operation to complete. Asynchronous: Post I/O request and switch to other work. DMA (Direct Memory.
1 Course Information Operating System Fall Instructor Information Office: 1N-214 Tel:(718) Webpage:
Operating Systems and Networks AE4B33OSS Introduction.
Operating Systems Lecture 02: Computer System Overview Anda Iamnitchi
Chapter 1 Computer System Overview Patricia Roy Manatee Community College, Venice, FL ©2008, Prentice Hall Operating Systems: Internals and Design Principles,
Ihr Logo Operating Systems Internals & Design Principles Fifth Edition William Stallings Chapter 1 Computer System Overview.
Operating systems, lecture 4 Team Viewer Tom Mikael Larsen, Thursdays in D A look at assignment 1 Brief rehearsal from lecture 3 More about.
Operating Systems Lecture No. 2. Basic Elements  At a top level, a computer consists of a processor, memory and I/ O Components.  These components are.
Interrupts, Buses Chapter 6.2.5, Introduction to Interrupts Interrupts are a mechanism by which other modules (e.g. I/O) may interrupt normal.
Computer Architecture Lecture 2 System Buses. Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given.
EEE440 Computer Architecture
ECEG-3202 Computer Architecture and Organization Chapter 3 Top Level View of Computer Function and Interconnection.
COMPUTER SYSTEM OVERVIEW
Fall 2000M.B. Ibáñez Lecture 25 I/O Systems. Fall 2000M.B. Ibáñez Categories of I/O Devices Human readable –used to communicate with the user –video display.
Operating System Isfahan University of Technology Note: most of the slides used in this course are derived from those of the textbook (see slide 4)
Operating System 1 COMPUTER SYSTEM OVERVIEW Achmad Arwan, S.Kom.
Stored Program A stored-program digital computer is one that keeps its programmed instructions, as well as its data, in read-write,
Chapter 6: Computer Components Dr Mohamed Menacer Taibah University
Dr Mohamed Menacer College of Computer Science and Engineering, Taibah University CE-321: Computer.
Lecture 1: Review of Computer Organization
1 Computer Architecture. 2 Basic Elements Processor Main Memory –volatile –referred to as real memory or primary memory I/O modules –secondary memory.
Chapter 3 System Buses.  Hardwired systems are inflexible  General purpose hardware can do different tasks, given correct control signals  Instead.
Chapter 1 Computer System Overview Patricia Roy Manatee Community College, Venice, FL ©2008, Prentice Hall Operating Systems: Internals and Design Principles,
1 Overview Computer System/Operating System Overview.
Computer Systems Overview. Lecture 1/Page 2AE4B33OSS W. Stallings: Operating Systems: Internals and Design, ©2001 Operating System Exploits the hardware.
Operating systems, Lecture 1 Microsoft Windows –Windows 7 –Windows 8 –Windows RT UNIX –Linux –IOS –Android.
1 Computer System Overview Chapter 1. 2 Operating System Exploits the hardware resources of one or more processors Provides a set of services to system.
Computer System Overview
Chapter 1 Computer System Overview
Interrupts.
Computer System Overview
Chapter 3 Top Level View of Computer Function and Interconnection
Computer System Overview
BIC 10503: COMPUTER ARCHITECTURE
Chapter 1 Computer System Overview
Computer System Overview
Chapter01 Computer System Overview
Presentation transcript:

Computer System Overview Chapter 1

Basic computer structure CPU Memory memory bus I/O bus diskNet interface

Computer System Processor: performs data processing Main memory: stores both data and programs, typically volatile Disks: secondary memory devices which provide persistent storage Network interfaces: inter-machine communication Buses: intra-machine communication memory bus (processor-memory) I/O bus (disks, network interfaces, other I/O devices, memory-bus)

Top-Level Components

Processor Registers User-visible registers –Enable programmer to minimize main- memory references by optimizing register use Control and status registers –Used by processor to control operating of the processor –Used by operating-system routines to control the execution of programs

User-Visible Registers May be referenced by machine language Available to all programs - application programs and system programs Types of registers –Data –Address Index Segment pointer Stack pointer

User-Visible Registers Address Registers –Index involves adding an index to a base value to get an address –Segment pointer when memory is divided into segments, memory is referenced by a segment and an offset –Stack pointer points to top of stack

Control and Status Registers Program Counter (PC) –Contains the address of an instruction to be fetched Instruction Register (IR) –Contains the instruction most recently fetched Program Status Word (PSW) –condition codes –Interrupt enable/disable –Supervisor/user mode

Control and Status Registers Condition Codes or Flags –Bits set by the processor hardware as a result of operations –Can be accessed by a program but not altered –Examples positive result negative result zero Overflow

Instruction Cycle

Instruction Fetch and Execute The processor fetches the instruction from memory Program counter (PC) holds address of the instruction to be fetched next Program counter is incremented after each fetch

Interrupts An interruption of the normal sequence of execution Improves processing efficiency Allows the processor to execute other instructions while an I/O operation is in progress A suspension of a process caused by an event external to that process and performed in such a way that the process can be resumed

Classes of Interrupts Program –arithmetic overflow –division by zero –execute illegal instruction –reference outside user’s memory space Timer I/O Hardware failure

Interrupt Handler A program that determines nature of the interrupt and performs whatever actions are needed Control is transferred to this program Generally part of the operating system

Interrupt Cycle

Processor checks for interrupts If no interrupts fetch the next instruction for the current program If an interrupt is pending, suspend execution of the current program, and execute the interrupt handler

Multiple Interrupts Disable interrupts while an interrupt is being processed –Processor ignores any new interrupt request signals

Multiple Interrupts Sequential Order Disable interrupts so processor can complete task Interrupts remain pending until the processor enables interrupts After interrupt handler routine completes, the processor checks for additional interrupts

Multiple Interrupts Priorities Higher priority interrupts cause lower- priority interrupts to wait Causes a lower-priority interrupt handler to be interrupted Example when input arrives from communication line, it needs to be absorbed quickly to make room for more input

Multiprogramming Processor has more than one program to execute The sequence the programs are executed depend on their relative priority and whether they are waiting for I/O After an interrupt handler completes, control may not return to the program that was executing at the time of the interrupt

Cache Memory Contains a portion of main memory Processor first checks cache If not found in cache, the block of memory containing the needed information is moved to the cache

Cache Memory motivated by the mismatch between processor and memory speed closer to the processor than the main memory smaller and faster than the main memory act as “attraction memory”: contains the value of main memory locations which were recently accessed (temporal locality) transfer between caches and main memory is performed in units called cache blocks/lines caches contain also the value of memory locations which are close to locations which were recently accessed (spatial locality) invisible to the OS

Cache Memory

Cache/Main Memory System

Cache Design Cache size –small caches have a significant impact on performance Block size –the unit of data exchanged between cache and main memory –hit means the information was found in the cache –larger block size more hits until probability of using newly fetched data becomes less than the probability of reusing data that has been moved out of cache

Cache Design Mapping function –determines which cache location the block will occupy Replacement algorithm –determines which block to replace –Least-Recently-Used (LRU) algorithm

Cache Design Write policy –When the memory write operation takes place –Can occur every time block is updated –Can occur only when block is replaced Minimizes memory operations Leaves memory in an obsolete state

Memory Hierarchy cpu cache main memory word transfer block transfer disks page transfer decrease cost per bit decrease frequency of access increase capacity increase access time increase size of transfer unit

Data transfer on the bus CPU Memory memory bus I/O bus diskNet interface cache cache-memory: cache misses, write-through/write-back memory-disk: swapping, paging, file accesses memory-Network Interface : packet send/receive I/O devices to the processor: interrupts

Programmed I/O I/O module performs the action, not the processor Sets appropriate bits in the I/O status register No interrupts occur Processor checks status until operation is complete

Interrupt-Driven I/O Processor is interrupted when I/O module ready to exchange data Processor is free to do other work No needless waiting Consumes a lot of processor time because every word read or written passes through the processor

Direct Memory Access Transfers a block of data directly to or from memory An interrupt is sent when the task is complete The processor is only involved at the beginning and end of the transfer

Direct Memory Access (DMA) I/O exchanges occur directly with memory Processor grants I/O module authority to read from or write to memory Relieves the processor responsibility for the exchange Processor is free to do other things

Direct Memory Access (DMA) address of the I/O device starting location in memory number of bytes direction of transfer (read/write from/to memory) bus arbitration between cache-memory and DMA transfers memory cache must be consistent with DMA Programming a DMA transfer

Multiprocessors CPU Memory memory bus I/O bus diskNet interface cache simple scheme: more than one processor on the same bus memory is shared among processors-- cache consistency bus contention increases -- does not scale alternative (non-bus) system interconnect -- expensive single-image operating systems CPU cache

Network of Computers network of computers: “share-nothing” -- cheap communication through message-passing: difficult to program challenge: build efficient shared memory abstraction in software each system runs its own operating system CPU Memory memory bus I/O bus diskNet interface cache CPU Memory memory bus I/O bus disk Net interface cache network