Pariz-Karimpour Feb 2011 1 Chapter 3 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge.

Slides:



Advertisements
Similar presentations
The Comparison Test Let 0 a k b k for all k.. Mika Seppälä The Comparison Test Comparison Theorem A Assume that 0 a k b k for all k. If the series converges,
Advertisements


Coordination of Multi-Agent Systems Mark W. Spong Donald Biggar Willett Professor Department of Electrical and Computer Engineering and The Coordinated.
Lecture 7: Basis Functions & Fourier Series
INTRODUCTION to SWITCHED SYSTEMS ; STABILITY under ARBITRARY SWITCHING
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
Chapter 2: Second-Order Differential Equations
A New Eigenstructure Fault Isolation Filter Zhenhai Li Supervised by Dr. Imad Jaimoukha Internal Meeting Imperial College, London 4 Aug 2005.
Investment Science D.G. Luenberger
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition Objectives: Jensen’s Inequality (Special Case) EM Theorem.
Probability theory 2010 Main topics in the course on probability theory  Multivariate random variables  Conditional distributions  Transforms  Order.
4.I. Definition 4.II. Geometry of Determinants 4.III. Other Formulas Topics: Cramer’s Rule Speed of Calculating Determinants Projective Geometry Chapter.
Universidad de La Habana Lectures 5 & 6 : Difference Equations Kurt Helmes 22 nd September - 2nd October, 2008.
Lecture 2 Linear Variational Problems (Part II). Conjugate Gradient Algorithms for Linear Variational Problems in Hilbert Spaces 1.Introduction. Synopsis.
Pariz-Karimpour Apr Chapter 2 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge.
SYSTEMS Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference: “System Identification Theory For The User” Lennart.
Probability theory 2011 Main topics in the course on probability theory  The concept of probability – Repetition of basic skills  Multivariate random.
Some Fundamentals of Stability Theory
4. Convergence of random variables  Convergence in probability  Convergence in distribution  Convergence in quadratic mean  Properties  The law of.
1 A Lyapunov Approach to Frequency Analysis Tingshu Hu, Andy Teel UC Santa Barbara Zongli Lin University of Virginia.
A Scalable Network Resource Allocation Mechanism With Bounded Efficiency Loss IEEE Journal on Selected Areas in Communications, 2006 Johari, R., Tsitsiklis,
Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues By Peter Woolf University of Michigan Michigan Chemical Process Dynamics.
Ch 3.3: Linear Independence and the Wronskian
Modern Control Systems1 Lecture 07 Analysis (III) -- Stability 7.1 Bounded-Input Bounded-Output (BIBO) Stability 7.2 Asymptotic Stability 7.3 Lyapunov.
1 Feedback Control of The Software Development Process Department of Computer Sciences Purdue University CS 490 D Technology Review Aditya P. Mathur …in.
Probability theory 2008 Outline of lecture 5 The multivariate normal distribution  Characterizing properties of the univariate normal distribution  Different.
MATH 685/ CSI 700/ OR 682 Lecture Notes Lecture 10. Ordinary differential equations. Initial value problems.
1 of 12 COMMUTATORS, ROBUSTNESS, and STABILITY of SWITCHED LINEAR SYSTEMS SIAM Conference on Control & its Applications, Paris, July 2015 Daniel Liberzon.
C OURSE : D ISCRETE STRUCTURE CODE : ICS 252 Lecturer: Shamiel Hashim 1 lecturer:Shamiel Hashim second semester Prepared by: amani Omer.
MODEL REFERENCE ADAPTIVE CONTROL
Asymptotic Techniques
CIS 540 Principles of Embedded Computation Spring Instructor: Rajeev Alur
Sheng-Fang Huang. Introduction If r (x) = 0 (that is, r (x) = 0 for all x considered; read “r (x) is identically zero”), then (1) reduces to (2) y"
Autumn 2008 EEE8013 Revision lecture 1 Ordinary Differential Equations.
Richard Patrick Samples Ph.D. Student, ECE Department 1.
RC Circuits C a b + - e R I a b e R C I RC 2RC Ce RC 2RC Ce q q t t.
Finding Limits Algebraically Chapter 2: Limits and Continuity.
Lecture #11 Stability of switched system: Arbitrary switching João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched Systems.
7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of.
1 Feedback Control of The Software Development Process Department of Computer Sciences Purdue University CS Honors Seminar João Cangussu (CS) Ray. A. DeCarlo.
AUTOMATIC CONTROL THEORY II Slovak University of Technology Faculty of Material Science and Technology in Trnava.
ECE 8443 – Pattern Recognition Objectives: Jensen’s Inequality (Special Case) EM Theorem Proof EM Example – Missing Data Intro to Hidden Markov Models.
Properties of Sets Lecture 26 Section 5.2 Tue, Mar 6, 2007.
Feedback Stabilization of Nonlinear Singularly Perturbed Systems MENG Bo JING Yuanwei SHEN Chao College of Information Science and Engineering, Northeastern.
Chapter P Prerequisites: Fundamental Concepts of Algebra 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 P.5 Factoring Polynomials.
ECE 4991 Electrical and Electronic Circuits Chapter 3.
Advanced Engineering Mathematics, 7 th Edition Peter V. O’Neil © 2012 Cengage Learning Engineering. All Rights Reserved. CHAPTER 4 Series Solutions.
1 Roadmap SignalSystem Input Signal Output Signal characteristics Given input and system information, solve for the response Solving differential equation.
Summary of the Last Lecture This is our second lecture. In our first lecture, we discussed The vector spaces briefly and proved some basic inequalities.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition Objectives: Jensen’s Inequality (Special Case) EM Theorem.
Lecture 39 Hopfield Network
Chapter 2.3 Continuity. Objectives Continuity at a Point Continuous Functions Algebraic Combinations Composites Intermediate Value Theorem for Continuous.
(MTH 250) Lecture 19 Calculus. Previous Lecture’s Summary Definite integrals Fundamental theorem of calculus Mean value theorem for integrals Fundamental.
MA4229 Lectures 13, 14 Week 12 Nov 1, Chapter 13 Approximation to periodic functions.
SECTION 5-5A Part I: Exponentials base other than e.
Proof And Strategies Chapter 2. Lecturer: Amani Mahajoub Omer Department of Computer Science and Software Engineering Discrete Structures Definition Discrete.
Advanced Engineering Mathematics 6th Edition, Concise Edition
Chapter 4: Linear Differential Equations
Main topics in the course on probability theory
LECTURE 10: EXPECTATION MAXIMIZATION (EM)
Autonomous Cyber-Physical Systems: Dynamical Systems
Research Methods in Acoustics Lecture 9: Laplace Transform and z-Transform Jonas Braasch.
Chapter 4 Sequences.
Fundamentals of Electric Circuits Chapter 18
Lecture #10 Switched systems
Controllability and Observability of Linear Dynamical Equations
Stability Analysis of Linear Systems
Chapter 4 THE LAPLACE TRANSFORM.
Linear Algebra Lecture 6.
Linear Algebra Lecture 11.
Presentation transcript:

Pariz-Karimpour Feb Chapter 3 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

5 Introduction

6 Introduction

7 ?Introduction

8 Introduction Example

Pariz-Karimpour Feb LetIntroduction

Pariz-Karimpour Feb Introduction

Pariz-Karimpour Feb This lecture provide: Basic observation on the ability and limitation of switching design Analyze and design of some switching for Stability and robustness Introduction

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results

Pariz-Karimpour Feb Algebraic Criteria

Pariz-Karimpour Feb Algebraic Criteria

Pariz-Karimpour Feb Algebraic Criteria

Pariz-Karimpour Feb Example Algebraic Criteria

Pariz-Karimpour Feb Algebraic Criteria

Pariz-Karimpour Feb Example Algebraic Criteria

Pariz-Karimpour Feb Algebraic Criteria

Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results

Pariz-Karimpour Feb Does this equivalence still hold for switched linear systems To establish the equivalence, we need the concept of switched convergence Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions

Pariz-Karimpour Feb R2R2... RlRl R1R1 RiRi Equivalence of the Stabilization Notions Since

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results

Pariz-Karimpour Feb Periodic and Synchronous Switchings

Pariz-Karimpour Feb Periodic and Synchronous Switchings

Pariz-Karimpour Feb Periodic and Synchronous Switchings

Pariz-Karimpour Feb Periodic and Synchronous Switchings

Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results

Pariz-Karimpour Feb Special Systems

Pariz-Karimpour Feb Special Systems

Pariz-Karimpour Feb Special Systems

Pariz-Karimpour Feb Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switchings Special Systems Robustness Issues General Results

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Robustness Issues Proof of theorem 3.15 (continue)

Pariz-Karimpour Feb Robustness Issues Proof of theorem 3.15 (continue)

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Proof of theorem 3.19 (continue) Robustness Issues

Pariz-Karimpour Feb Proof: By theorem 3.19 we have Robustness Issues

Pariz-Karimpour Feb Robustness Issues

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

Pariz-Karimpour Feb Periodic Switching

Pariz-Karimpour Feb m …… 12m 12m Periodic Switching

Pariz-Karimpour Feb Define the fundamental matrix as: Periodic Switching

Pariz-Karimpour Feb Periodic Switching

Pariz-Karimpour Feb m …… 12m 12m = 1 = 2 Periodic Switching

Pariz-Karimpour Feb m …… 12m 12m = 1 = 2 Periodic Switching

Pariz-Karimpour Feb Periodic Switching

Pariz-Karimpour Feb i) The system state is bounded if the perturbation is bounded ii) The system state is bounded and convergent if the perturbation is bounded and convergent iii) The system state is exponentially convergent if the perturbation is exponentially convergent Periodic Switching

Pariz-Karimpour Feb i) Periodic Switching

Pariz-Karimpour Feb ii) Periodic Switching

Pariz-Karimpour Feb iii) Periodic Switching

Pariz-Karimpour Feb Periodic Switching

Pariz-Karimpour Feb Periodic Switching

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb Switching strategy State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb

Pariz-Karimpour Feb function y=myfun2(x) if x(1)~=x(2);y=1; else y=0; end function y=myfun1(w) if w==1; y=[1;0];end if w==2; y=[0;1];end end function y=myfun(w) x=w(1:2);sigk=w(3); A1=[-2 0;0 1];A2=[1 0;0 -2];x0=[1;-1]; P=0.5*eye(2); Q(1).s=A1'*P+P*A1;Q(2).s=A2'*P+P*A2;r(1)=0.4;r(2)=0.4; if (x'*Q(sigk).s*x) > (-r(sigk)*x'*x) [c,y]=min([x'*Q(1).s*x, x'*Q(2).s*x]); else y=sigk; end State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching

Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb Modified Switching strategy A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb A Modified Switching Law

Pariz-Karimpour Feb State-space-partition-based Switching A Modified Switching Law Observer-based Switching State-feedback Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb

Pariz-Karimpour Feb

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Check the assumption 3.2 for the system 2- Repeat the system simulatrion by 3- Choose suitable L 1 and L 2 and repeat the simulation. 4- Examine the system for y=x 1 for the first system and y=x 2 for the second one. Exercises: 5- According to exercise 4 derive another condition for observer base switching.

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

Pariz-Karimpour Feb Combined Switching

Pariz-Karimpour Feb Periodic switching 0 12m …… 12m 12m Combined Switching

Pariz-Karimpour Feb State feedback switching Combined Switching

Pariz-Karimpour Feb Combined Switching

Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb tktk t k+2 t k+1 Switching Strategy Description

Pariz-Karimpour Feb Proof: Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description

Pariz-Karimpour Feb

Pariz-Karimpour Feb By student (#2) Switching Strategy Description

Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching

Pariz-Karimpour Feb Proof: By one of the student (#3) Robustness Properties

Pariz-Karimpour Feb By student (#3) Robustness Properties

Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Observer-based Switching

Pariz-Karimpour Feb Proof: By one of the student (#4) Observer-based Switching

Pariz-Karimpour Feb Switching Strategy Description Robustness Properties Observer-based Switching Extensions Combined Switching

Pariz-Karimpour Feb Extensions

Pariz-Karimpour Feb Extensions

Pariz-Karimpour Feb Extensions

Pariz-Karimpour Feb Extensions

Pariz-Karimpour Feb Let

Pariz-Karimpour Feb Let t0t0 t4t4 t1t1 t2t2 t3t3 Extensions

Pariz-Karimpour Feb Extensions

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems

Pariz-Karimpour Feb

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Numerical Examples

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching 3.6. Numerical Examples Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.1. Introduction

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switching

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.2. General Results Algebraic Criteria Equivalence of the Stabilization Notions Periodic and Synchronous Switching Special Systems Robustness Issues

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching 0 12m …… 12m 12m

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.3. Periodic Switching

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Switching strategy

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Modified Switching strategy

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.4. State Feedback Switching Observer Based Switching strategy

Pariz-Karimpour Feb Introduction 3.2. General Results 3.3. Periodic Switching 3.4. State-feedback Switching 3.5. Combined Switching Stabilizing Switching for Autonomous Systems Summary

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Robustness Property)

Pariz-Karimpour Feb Stabilizing Switching for Autonomous Systems Summary 3.5. Combined Switching (Extension)

Pariz-Karimpour Feb