Barbora Gulejová 1 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Particle sources and radiation distributions in.

Slides:



Advertisements
Similar presentations
Reunion Scientifique 05/04/2006 Centre de Recherches en Physique des Plasmas 1 of 12 Barbora Gulejova Some key results from SOL H-mode characterisation.
Advertisements

Barbora Gulejová 1 of 19 Centre de Recherches en Physique des Plasmas Swiss physical society 26/3/2008 SOLPS5 simulations of ELMing H-mode Barbora Gulejová.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Alberto Loarte 10 th ITPA Divertor and SOL Physics Group Avila – Spain 7/10 – 1 – Update on Thermal Loads during disruptions and VDEs A. Loarte.
Exploring Capability to Calculate Heat Loads on Divertors and Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting September 6-7, 2007 Idaho Falls,
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
Centre de Recherches en Physique des Plasmas TF-E modellers meeting B. Gulejová6/5/ of 10 SOLPS5 simulations of Type I ELMing H-mode at JET Barbora.
Comparison of drift simulation with D,Chi different in div.legs.
R. A. Pitts: FOM-Rijnhuizen, 30/11/2006 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique des.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
Rotation effects in MGI rapid shutdown simulations V.A. Izzo, P.B. Parks, D. Shiraki, N. Eidietis, E. Hollmann, N. Commaux TSD Workshop 2015 Princeton,
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
1 of 22A.V.Chankin & D.P.Coster, 18 th PSI Conference, Toledo, Spain, 29 May 2008 Comparison of 2D Models for the Plasma Edge with Experimental Measurements.
Physics of fusion power Lecture 9 : The tokamak continued.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Edge-SOL Plasma Transport Simulation for the KSTAR
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
DIVERTOR INVESTIGATIONS ON NSTX-U LEADING TO FNSF Mike Kotschenreuther Brent Covele Swadesh Mahajan Prashant Valanju Jonathan Roeltgen Zhong-Ping Chen.
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Mechanisms for losses during Edge Localised modes (ELMs)
Modeling Neutral Hydrogen in the HSX Stellarator
Features of Divertor Plasmas in W7-AS
Finite difference code for 3D edge modelling
Reduction of ELM energy loss by pellet injection for ELM pacing
First Experiments Testing the Working Hypothesis in HSX:
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

Barbora Gulejová 1 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Particle sources and radiation distributions in the TCV tokamak edge Candidate: Barbora Gulejová Supervisor of thesis: Dr. Richard Pitts Acknowledgements: Xavier Bonnin, Marco Wischmeier, David Coster, Roland Behn, Jan Horáček, Janos Marki Thesis committee

Barbora Gulejová 2 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 OUTLINE Research plan – change of direction … SOLPS 5 code package (B2 - EIRENE) Theoretical model of simulation Comparison of experimental data with simulation Simulation of ELM itself Drifts implementation Future plans * * * * * * *

Barbora Gulejová 3 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 RESEARCH PLAN Considering title change to SOLPS5 modelling of ELMing H-mode AIM: contribute to understanding transport in the SOL * using new unique experimental data from TCV (AXUV, IR) * interpretative modelling employing the SOLPS5 fluid/Monte Carlo code * transient events => ELMs * rigorous benchmarking = seeking the possible agreement between the experiment and simulation Twin camera system Bolometry - total radiated power Lyman alpha – edge radiation  => investigation during summer shutdown => * scratches = source of light seen * low peak transmission of the L  absorption filters (10%) * strong angular dependence of the emission (only 1% at incident angle 60) * strong ageing effect due to exposure to boronisation, He glow discharge and plasma operation observed on the unfiltered bolometric diodes NEXT STEP: D alpha - higher transmission

Barbora Gulejová 4 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Ageing effect with filter removed “New LYMAN” without filter “old AXUV” Huge increase in signal when filters removed – layer deposition + ageing G.Veres

Barbora Gulejová 5 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Scrape-Off Layer Plasma Simulation Suite of codes to simulate transport in edge plasma of tokamaks B2 B2 - solves 2D multi-species fluid equations on a grid given from magnetic equilibrium EIRENE EIRENE - kinetic transport code for neutrals based on Monte - Carlo algorithm SOLPS 5 SOLPS 5 – coupled EIRENE + B2.5 Main inputs: magnetic equilibrium P sol = P heat – P rad core upstream separatrix density n e Free parameters: cross-field transport coefficients (D ┴,  ┴, v ┴ ) B2 plasma background => recycling fluxes EIRENE Sources and sinks due to neutrals and molecules measured systematically adjusted Mesh 72 grid cells poloidally along separatrix 24 cells radially

Barbora Gulejová 6 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Type III Elming H-mode at TCV # ELMs - too rapid (frequency ~ 200 Hz) for comparison on an individual ELM basis => Many similar events are coherently averaged inside the interval with reasonably periodic elms Pre-ELM phase = steady state ELM = particles and heat are thrown into SOL ( elevated cross-field transport coefficients) Post-ELM phase t pre ~ 2 ms t elm ~ 100 μs t post ~ 1 ms

Barbora Gulejová 7 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 upstream Edge Thomson scattering n e and T e upstream profiles Diagnostic profiles used to constrain the code laser beam Strategy: Match these experimental profiles with data from SOLPS simulation runs by changing cross-field transport parameters D ┴,Χ ┴, v ┴ downstream Langmuir probes j sat target profiles j sat [A.m -2 ] R-R sep [m] outer target j sat R-R sep [m] inner target RCP – reciprocating probe nene pedestal TeTe R-R sep [m] pedestal R-R sep [m] I R outer target Heat flux [MW.m -2 ] IR cameras Perpendicular heat flux R-R sep [m] R.Behn J.Marki J.Horacek

Barbora Gulejová 8 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Theory – steady state simulation Cross-field transport coefficients Cross-field radial transport in the main SOL - complex phenomena Ansatz:( D ┴,  ┴, v ┴ ) - variation radially – transport barrier (TB) poloidally – no TB in div.legs outer div.leg  ┴ ┴ SOL div.legs sep D┴D┴ SOL div.legs sep v┴v┴ SOL div.legs sep main SOL diffusion (D ┴ ) + convection (v ┴ ) heat flux SOL radial heat flux: particle flux SOL radial particle flux: main SOL Inner div.leg x x Pure diffusion: v ┴ =0 everywhere * * More appropriate: Convection simulations with D ┴ = D ┴ class 2 approaches

Barbora Gulejová 9 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Comparison of experimental data with simulation 1. Purely “diffusive” approach upstream n e SOLPS TS RCP pedestal wall 1 6 R-R sep separatrix T e SOLPS TS RCP Good agreement !!! core D┴Χ┴D┴Χ┴ D ┴ doesn’t require too much variation through confined region In the main SOL- increase : D ┴ = 1 m 2.s -1 Χ ┴ = 6 m 2.s -1 in order to flatten T e profile Accepted to JNM 2007

Barbora Gulejová 10 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 targets J sat [A.m -2 ] LP, average SOLPS outerinner T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] LP, average SOLPS outer inner IR Comparison of experimental data with simulation 1. Purely “diffusive” approach With only radial variation of D ┴,  ┴ code overestimates data Poloidal variation necessary Remove transport barrier from divertor legs D ┴,Χ ┴ = constant in div. legs Description of cross-field transport in divertor as radially constant is more appropriate D ┴ = 3 m 2.s -1 in div.legs 1m 2.s -1 in SOL Χ ┴ = 5 m 2.s -1 in div.legs 6 m 2.s -1 in SOL NO DRIFTS yet! => Accepted to JNM 2007

Barbora Gulejová 11 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Comparison of experimental data with simulation 2. “Convective” approach upstream targets outer inner D┴Χ┴D┴Χ┴ n e SOLPS TS RCP pedestal wall R-R sep separatrix T e SOLPS TS RCP 30 2 v┴v┴ J sat [A.m -2 ] LP SOLPS T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] LP SOLPS outer inner IR Density n e in SOL is too high ! Reason: Competition between radial & parallel fluxes v ┴ acts towards radial direction Parallel flux is smaller than in “conductive approach” combination of all 3 parameters D ┴,  ┴, v ┴ ??? Reasonable agreement =>

Barbora Gulejová 12 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Type III ELM simulation H-mode  Edge MHD instabilities  Periodic bursts of particles and energy into the SOL - leaves edge pedestal region in the form of a helical filamentary structure localised in the outboard midplane region of the poloidal cross-section LFS HFS W~200J DαDα Simulation of ELM * Instantaneous increase of the cross-field transport parameters D ┴,  ┴, v ┴ ! TCV Type III ELM Time 1.) for ELM time – from experiment coh.averaged ELM = t ELM = s 2.) at poloidal location -> expelled from area A ELM at LFS From the cross-field radial transport can be estimated the combination of trasnport parameters corresponding to the given expelled energy W ELM, t ELM and A ELM A ELM = 6m 2 W = 400 J D┴D┴  ┴ ┴ Many different appraches possible => changes in D ┴,  ┴ only or in v ┴ too …

Barbora Gulejová 13 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Tools to simulate ELM in SOLPS outer div.leg main SOL Inner div.leg Several options in SOLPS transport inputfiles : * Multiplying of the transport coefficients in the specified poloidal region * In 3 different radial regions (core, pedestal, SOL) by different multipliers Added new options: * Poloidal variation of the multiplicator * Step function * Gaussian function * Choosing completely different shape of radial profile for chosen poloidal region pedestalwallcore No TB preelm ELMELM x M ELM

Barbora Gulejová 14 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 ELM simulations (example) upstream Increase of D ┴,  ┴ 5 times in poloidal region of the whole LFS! TS measurements (R.Behn) => * Drop in pedestal width and height appears only for n e SOLPS * bigger pedestal collaps * higher n e and T e in SOL But the right tendency – pedestal collapse D┴D┴ nene Problem: Time-dependent pre-ELM solution necessary !!! as a starting state for time-dependent ELM simulation (X.Bonnin+D.Coster) Time steps of B2 and Eirene parts of the code must be the same = s (not the case for steady state: eir_step=10 -1 s) => must be done in the steps by decreasing the time steps gruadually and seeking for convergence => difficult and time-consuming process – in progress R-R sep time Time evolution of D ┴ and n e t ELM =100 µs

Barbora Gulejová 15 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 SOLPS5 simulations with DRIFTS E r xB,  pxB Ballooning Pfirsch- Schlüter Divertor sink ExBExB Poloidal Parallel BB Bx  B REV B  SOL flows DRIFTS – contribute to in/out assymetries TCV : unconventional equilibrium with an extremely short X point to inner strike points position -> might dominate over drifts and divertor physics effects Switching on drifts it’s likely to decrease the predicted T e at outer target may have only small effect at the inner target SOLPS: X.Bonnin -implememtation of drift terms * Anomalous contribution (ExB) * Diamagnetic contribution (  pxB) * Viscous contribution R. Pitts

Barbora Gulejová 16 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 First attempt of SOLPS simulation with DRIFTS upstream R-R sep D┴Χ┴D┴Χ┴ n e SOLPS TS RCP pedestal wall 1 R-R sep separatrix T e SOLPS TS RCP 6 targets outer inner J sat [A.m -2 ] LP SOLPS T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] LP SOLPS outer inner IR R-R sep Not yet completely converged solution…

Barbora Gulejová 17 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 First attempt of SOLPS simulation with DRIFTS outer inner J sat [A.m -2 ] LP SOLPS T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] LP SOLPS outer inner IR R-R sep outer inner J sat [A.m -2 ] LP SOLPS T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] LP SOLPS outer inner IR R-R sep NO DRIFTS DRIFTS NO DRIFTS: Overestimation of outer target T e DRIFTS: Decrease of outer target T e as expected Same effect on j sat and heat flux! Inner target : not significant effect as expected Good early promise !!!

Barbora Gulejová 18 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Future plans After obtaining the trully time-dependent pre-ELM solution ! continue in the attepmts to simulate the small TCV ELM properly -use several different approaches Planed visit to JET in february –march 2007 : simulate the big JET ELM Continue in the simulation with DRIFTs included in SOLPS * * *

Barbora Gulejová 19 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Thank you for attention !

Barbora Gulejová 20 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 * * * * * First attempt to simulate Scrape-Off layer in H-mode on TCV with aim to simulate Type III ELMs Simulations conducted using coupled fluid-Monte Carlo (B2-EIRENE) SOLPS5 code constrained by upstream profiles of ne and Te and at the targets profiles of jsat Using exp. data as a guide to systematic adjustments of perpendicular particle and heat transport coefficients Code experiment agreement ONLY possible if transport coefficients are varied radially AND polloidally Excellent match obtained for inter-ELM phase  good basis for simulation of ELM itself (in progress) Conclusions

Barbora Gulejová 21 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Edge plasma - terminology Core plasma Divertor targets Private flux region Separatrix Scrape-off layer (SOL) –Cool plasma on open field lines –SOL width ~1 cm (  B) –Length usually 10’s m (|| B) Poloidal cross-section Outer ITER will be a divertor tokamak Divertor –Plasma guided along field lines to targets remote from core plasma: low T and high n Inner Last closed flux surface LFS HFS

Barbora Gulejová 22 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Comparison of neoclassical values with SOLPS D ┴,  ┴

Barbora Gulejová 23 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 ELM simulations (example) P SOL ~ 100 J Time evolution at targets targets outerinner J sat [A.m -2 ] T e [eV] n e [m -3 ] Perp.heat flux [MW.m -2 ] outer inner J sat [A.m -2 ] T e [eV] n e [m -3 ] T i [eV] inner outer J sat at inner target ~ 20 Exp. ~ 40 outer target ~ 10 Exp. ~ 35 SOLPS lower than experiment not enough energy expelled (~200 J from exp.)! => Time of arrival of particles to targets much shorter than expected … Problem: Time-dependent pre-ELM solution to start the ELM necessary!! Difficult process : Time steps of B2 and Eirene parts of the code must be the same = s - must be done in the steps by decreasing the time steps gruadually and seeking for convergence => difficult and time-consuming process – in progress

Barbora Gulejová 24 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Parallel Mach Flows

Barbora Gulejová 25 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 preELM time-dependent solution necessary !!!