CS 61C L15 Floating Point I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.

Slides:



Advertisements
Similar presentations
Spring 2013 Advising Starts this week! CS2710 Computer Organization1.
Advertisements

Fixed Point Numbers The binary integer arithmetic you are used to is known by the more general term of Fixed Point arithmetic. Fixed Point means that we.
1 IKI10230 Pengantar Organisasi Komputer Bab 6: Aritmatika 7 & 14 Mei 2003 Bobby Nazief Qonita Shahab bahan kuliah:
Floating Point Numbers
1 CS61C L9 Fl. Pt. © UC Regents CS61C - Machine Structures Lecture 9 - Floating Point, Part I September 27, 2000 David Patterson
COMP3221: Microprocessors and Embedded Systems Lecture 14: Floating Point Numbers Lecturer: Hui Wu Session 2, 2004.
Integer Multiplication (1/3)
CS61C L11 Floating Point II (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
Chapter 3 Arithmetic for Computers. Multiplication More complicated than addition accomplished via shifting and addition More time and more area Let's.
CS 447 – Computer Architecture Lecture 3 Computer Arithmetic (2)
Booth’s Algorithm.
releases HotSpotAtHome
Inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #6 – Number Representation, IEEE FP Greet class Jeremy Huddleston.
CS 61C L15 Floating Point I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
CS61C L11 Floating Point I (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 – Floating.
CS 61C L02 Number Representation (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
1 EECS Components and Design Techniques for Digital Systems Lec 19 – Fixed Point & Floating Point Arithmetic 10/23/2007 David Culler Electrical Engineering.
CS61C L15 Floating Point I (1) Garcia, Fall 2011 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS 61C L15 Floating Point I (1) Krause, Spring 2005 © UCB This day in history… TA Danny Krause inst.eecs.berkeley.edu/~cs61c-td inst.eecs.berkeley.edu/~cs61c.
CS61C L16 Floating Point II (1)Mowery, Spring 2008 © UCB TA Oddinaire Keaton Mowery inst.eecs.berkeley.edu/~cs61c UC Berkeley.
CSE 378 Floating-point1 How to represent real numbers In decimal scientific notation –sign –fraction –base (i.e., 10) to some power Most of the time, usual.
1 Module 2: Floating-Point Representation. 2 Floating Point Numbers ■ Significant x base exponent ■ Example:
CS 61C L10 Floating Point (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #10: Floating Point
CS61C L15 Floating Point I (1) Jacobs, Spring 2008 © UCB TA Ordinaire Dave Jacobs inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L15 Floating Point I (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L15 Floating Point I (1) Garcia, Fall 2006 © UCB #16 Cal rolls over OSU  Behind the arm of Nate Longshore’s 341 yds passing & 4 TDs, the Bears roll.
Computer Science 210 Computer Organization Floating Point Representation.
Binary Representation and Computer Arithmetic
IT 251 Computer Organization and Architecture Introduction to Floating Point Numbers Chia-Chi Teng.
Computer Arithmetic Nizamettin AYDIN
Computer Arithmetic. Instruction Formats Layout of bits in an instruction Includes opcode Includes (implicit or explicit) operand(s) Usually more than.
Csci 136 Computer Architecture II – Floating-Point Arithmetic
CEN 316 Computer Organization and Design Computer Arithmetic Floating Point Dr. Mansour AL Zuair.
CS61C L11 Floating Point (1) Pearce, Summer 2010 © UCB inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 11 Floating Point
IT253: Computer Organization
Computing Systems Basic arithmetic for computers.
Floating Point. Agenda  History  Basic Terms  General representation of floating point  Constructing a simple floating point representation  Floating.
Data Representation in Computer Systems
Floating Point (a brief look) We need a way to represent –numbers with fractions, e.g., –very small numbers, e.g., –very large numbers,
CH09 Computer Arithmetic  CPU combines of ALU and Control Unit, this chapter discusses ALU The Arithmetic and Logic Unit (ALU) Number Systems Integer.
9.4 FLOATING-POINT REPRESENTATION
CSC 221 Computer Organization and Assembly Language
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
FLOATING POINT ARITHMETIC P&H Slides ECE 411 – Spring 2005.
CS 61C L3.2.1 Floating Point 1 (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture Floating Point Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
CHAPTER 3 Floating Point.
CDA 3101 Fall 2013 Introduction to Computer Organization
Numbers in Computers.
CS 232: Computer Architecture II Prof. Laxmikant (Sanjay) Kale Floating point arithmetic.
10/7/2004Comp 120 Fall October 7 Read 5.1 through 5.3 Register! Questions? Chapter 4 – Floating Point.
Fixed-point and floating-point numbers Ellen Spertus MCS 111 October 4, 2001.
There is one handout today at the front and back of the room!
Dr. Clincy Professor of CS
April 2006 Saeid Nooshabadi
Data Structures Mohammed Thajeel To the second year students
CS 61C: Great Ideas in Computer Architecture Floating Point Arithmetic
Hello to Robb Neuschwander listening from Louisville, KY!
Floating Point Numbers
Lecturer PSOE Dan Garcia
Topic 3d Representation of Real Numbers
Numbers with fractions Could be done in pure binary
CDA 3101 Spring 2016 Introduction to Computer Organization
Presentation transcript:

CS 61C L15 Floating Point I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 15 – Floating Point I (good buddy) Bring on USC…game on!   Cal romps over Oregon St to go 3-0 (#7!) in preparation to face USC on Saturday at 4-0. We lead NATION in Div I- A scoring & passing efficiency! If we win, and we can, it will be HUGE…surreal! calbears.collegesports.com/sports/m-footbl/spec-rel/100304aad.html

CS 61C L15 Floating Point I (2) Garcia, Fall 2004 © UCB Quote of the day “95% of the folks out there are completely clueless about floating-point.” James Gosling Sun Fellow Java Inventor

CS 61C L15 Floating Point I (3) Garcia, Fall 2004 © UCB Review of Numbers Computers are made to deal with numbers What can we represent in N bits? Unsigned integers: 0to2 N - 1 Signed Integers (Two’s Complement) -2 (N-1) to 2 (N-1) - 1

CS 61C L15 Floating Point I (4) Garcia, Fall 2004 © UCB Other Numbers What about other numbers? Very large numbers? (seconds/century) 3,155,760, ( x 10 9 ) Very small numbers? (atomic diameter) ( x ) Rationals (repeating pattern) 2/3 ( ) Irrationals 2 1/2 ( ) Transcendentals e ( ),  ( ) All represented in scientific notation

CS 61C L15 Floating Point I (5) Garcia, Fall 2004 © UCB Scientific Notation (in Decimal) x radix (base) decimal pointmantissa exponent Normalized form: no leadings 0s (exactly one digit to left of decimal point) Alternatives to representing 1/1,000,000,000 Normalized: 1.0 x Not normalized: 0.1 x 10 -8,10.0 x

CS 61C L15 Floating Point I (6) Garcia, Fall 2004 © UCB Scientific Notation (in Binary) 1.0 two x 2 -1 radix (base) “binary point” exponent Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers Declare such variable in C as float mantissa

CS 61C L15 Floating Point I (7) Garcia, Fall 2004 © UCB Floating Point Representation (1/2) Normal format: +1.xxxxxxxxxx two *2 yyyy two Multiple of Word Size (32 bits) 0 31 SExponent Significand 1 bit8 bits23 bits S represents Sign Exponent represents y’s Significand represents x’s Represent numbers as small as 2.0 x to as large as 2.0 x 10 38

CS 61C L15 Floating Point I (8) Garcia, Fall 2004 © UCB Floating Point Representation (2/2) What if result too large? (> 2.0x10 38 ) Overflow! Overflow  Exponent larger than represented in 8-bit Exponent field What if result too small? (>0, < 2.0x ) Underflow! Underflow  Negative exponent larger than represented in 8-bit Exponent field How to reduce chances of overflow or underflow?

CS 61C L15 Floating Point I (9) Garcia, Fall 2004 © UCB Double Precision Fl. Pt. Representation Next Multiple of Word Size (64 bits) Double Precision (vs. Single Precision) C variable declared as double Represent numbers almost as small as 2.0 x to almost as large as 2.0 x But primary advantage is greater accuracy due to larger significand 0 31 SExponent Significand 1 bit11 bits20 bits Significand (cont’d) 32 bits

CS 61C L15 Floating Point I (10) Garcia, Fall 2004 © UCB QUAD Precision Fl. Pt. Representation Next Multiple of Word Size (128 bits) Unbelievable range of numbers Unbelievable precision (accuracy) This is currently being worked on

CS 61C L15 Floating Point I (11) Garcia, Fall 2004 © UCB IEEE 754 Floating Point Standard (1/4) Single Precision, DP similar Sign bit:1 means negative 0 means positive Significand: To pack more bits, leading 1 implicit for normalized numbers bits single, bits double always true: Significand < 1 (for normalized numbers) Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

CS 61C L15 Floating Point I (12) Garcia, Fall 2004 © UCB IEEE 754 Floating Point Standard (2/4) Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands Wanted it to be faster, single compare if possible, especially if positive numbers Then want order: Highest order bit is sign ( negative < positive) Exponent next, so big exponent => bigger # Significand last: exponents same => bigger #

CS 61C L15 Floating Point I (13) Garcia, Fall 2004 © UCB IEEE 754 Floating Point Standard (3/4) Negative Exponent? 2’s comp? 1.0 x 2 -1 v. 1.0 x2 +1 (1/2 v. 2) / This notation using integer compare of 1/2 v. 2 makes 1/2 > 2! Instead, pick notation is most negative, and is most positive 1.0 x 2 -1 v. 1.0 x2 +1 (1/2 v. 2) 1/

CS 61C L15 Floating Point I (14) Garcia, Fall 2004 © UCB IEEE 754 Floating Point Standard (4/4) Called Biased Notation, where bias is number subtract to get real number IEEE 754 uses bias of 127 for single prec. Subtract 127 from Exponent field to get actual value for exponent 1023 is bias for double precision Summary (single precision): 0 31 SExponent Significand 1 bit8 bits23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) Double precision identical, except with exponent bias of 1023

CS 61C L15 Floating Point I (15) Garcia, Fall 2004 © UCB “Father” of the Floating point standard IEEE Standard 754 for Binary Floating-Point Arithmetic. …/ieee754status/754story.html Prof. Kahan 1989 ACM Turing Award Winner!

CS 61C L15 Floating Point I (16) Garcia, Fall 2004 © UCB Administrivia…Midterm in 2 weeks! Midterm 1 Pimintel Mon 7-10pm Conflicts/DSP? Head TA Andy, cc Dan How should we study for the midterm? Form study groups -- don’t prepare in isolation! Attend the review session 2pm in 10 Evans) Look over HW, Labs, Projects Write up your 1-page study sheet Go over old exams – HKN office has put them online (link from 61C home page) Dan will release some of his old midterms this week to use as a study aid (to HKN) We won’t have faux exams this year…

CS 61C L15 Floating Point I (17) Garcia, Fall 2004 © UCB Upcoming Calendar Week #MonWedThurs LabFri #6 This week Floating Pt I Floating Pt II Floating Pt MIPS Inst Format III #7 Next week Running Program Caches #8 Midterm week Caches 7pm Caches Caches Midterm grades out

CS 61C L15 Floating Point I (18) Garcia, Fall 2004 © UCB Understanding the Significand (1/2) Method 1 (Fractions): In decimal: => / => / In binary: => / = 6 10 /8 10 => 11 2 /100 2 = 3 10 /4 10 Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

CS 61C L15 Floating Point I (19) Garcia, Fall 2004 © UCB Understanding the Significand (2/2) Method 2 (Place Values): Convert from scientific notation In decimal: = (1x10 0 ) + (6x10 -1 ) + (7x10 -2 ) + (3x10 -3 ) + (2x10 -4 ) In binary: = (1x2 0 ) + (1x2 -1 ) + (0x2 -2 ) + (0x2 -3 ) + (1x2 -4 ) Interpretation of value in each position extends beyond the decimal/binary point Advantage: good for quickly calculating significand value; use this method for translating FP numbers

CS 61C L15 Floating Point I (20) Garcia, Fall 2004 © UCB Example: Converting Binary FP to Decimal Sign: 0 => positive Exponent: two = 104 ten Bias adjustment: = -23 Significand: 1 + 1x x x x x = = 1.0 ten ten Represents: ten *2 -23 ~ 1.986*10 -7 (about 2/10,000,000)

CS 61C L15 Floating Point I (21) Garcia, Fall 2004 © UCB Converting Decimal to FP (1/3) Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy. Show MIPS representation of = -3/4 -11 two /100 two = two Normalized to -1.1 two x 2 -1 (-1) S x (1 + Significand) x 2 (Exponent-127) (-1) 1 x ( ) x 2 ( )

CS 61C L15 Floating Point I (22) Garcia, Fall 2004 © UCB Converting Decimal to FP (2/3) Not So Simple Case: If denominator is not an exponent of 2. Then we can’t represent number precisely, but that’s why we have so many bits in significand: for precision Once we have significand, normalizing a number to get the exponent is easy. So how do we get the significand of a neverending number?

CS 61C L15 Floating Point I (23) Garcia, Fall 2004 © UCB Converting Decimal to FP (3/3) Fact: All rational numbers have a repeating pattern when written out in decimal. Fact: This still applies in binary. To finish conversion: Write out binary number with repeating pattern. Cut it off after correct number of bits (different for single v. double precision). Derive Sign, Exponent and Significand fields.

CS 61C L15 Floating Point I (24) Garcia, Fall 2004 © UCB 1: : : : -7 5: : -15 7: -7 * 2^129 8: -129 * 2^7 Peer Instruction What is the decimal equivalent of the floating pt # above?

CS 61C L15 Floating Point I (25) Garcia, Fall 2004 © UCB Peer Instruction Answer What is the decimal equivalent of: SExponentSignificand (-1) S x (1 + Significand) x 2 (Exponent-127) (-1) 1 x ( ) x 2 ( ) -1 x (1.111) x 2 (2) 1: : : : -7 5: : -15 7: -7 * 2^129 8: -129 * 2^

CS 61C L15 Floating Point I (26) Garcia, Fall 2004 © UCB “And in conclusion…” Floating Point numbers approximate values that we want to use. IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers Every desktop or server computer sold since ~1997 follows these conventions Summary (single precision): 0 31 SExponent Significand 1 bit8 bits23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) Double precision identical, bias of 1023