Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP.

Slides:



Advertisements
Similar presentations
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
The Physics Base for ITER and DEMO Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany EURATOM Association Hauptvortrag given at AKE DPG.
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
NUMERICAL INVESTIGATION OF WAVE EFFECTS IN HIGH-FREQUENCY CAPACITIVELY COUPLED PLASMAS* Yang Yang and Mark J. Kushner Department of Electrical and Computer.
1 Particle-In-Cell Monte Carlo simulations of a radiation driven plasma Marc van der Velden, Wouter Brok, Vadim Banine, Joost van der Mullen, Gerrit Kroesen.
Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D
Physics of fusion power
Chamber Dynamic Response Modeling Zoran Dragojlovic.
WAFER EDGE EFFECTS CONSIDERING ION INERTIA IN CAPACITIVELY COUPLED DISCHARGES* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department.
Physics of fusion power Lecture 8 : The tokamak continued.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Plasma Kinetics around a Dust Grain in an Ion Flow N F Cramer and S V Vladimirov, School of Physics, University of Sydney, S A Maiorov, General Physics.
CMS HIP Multiscale simulation Model of Electrical Breakdown Helsinki Institute of Physics and Department of Physics University of Helsinki Finland Flyura.
Physics of Fusion power Lecture4 : Quasi-neutrality Force on the plasma.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
Status and Prospects of Nuclear Fusion Using Magnetic Confinement Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany Invited Talk given.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Overview of equations and assumptions Elena Khomenko, Manuel Collados, Antonio Díaz Departamento de Astrofísica, Universidad de La Laguna and Instituto.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
Yiting Zhangb, Mark Denninga, Randall S. Urdahla and Mark J. Kushnerb
Why plasma processing? (1) UCLA Accurate etching of fine features.
Physics of fusion power Lecture 10: tokamak – continued.
Plasma diagnostics using spectroscopic techniques
Atomic scale understandings on hydrogen behavior in Li 2 O - toward a multi-scale modeling - Satoru Tanaka, Takuji Oda and Yasuhisa Oya The University.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
CMS HIP Plasma-Wall Interactions – Part I: In Fusion Reactors Helga Timkó Department of Physics University of Helsinki Finland.
CONTROL OF ELECTRON ENERGY DISTRIBUTIONS THROUGH INTERACTION OF ELECTRON BEAMS AND THE BULK IN CAPACITIVELY COUPLED PLASMAS* Sang-Heon Song a) and Mark.
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
NIMROD Simulations of a DIII-D Plasma Disruption
of magnetized discharge plasmas: fluid electrons + particle ions
CMS HIP Plasma-Wall Interactions – Part II: In Linear Colliders Helga Timkó Department of Physics University of Helsinki Finland.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
Introduction to Plasma-Surface Interactions Lecture 5 Sputtering.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma Dmytro Sydorenko University of Alberta,
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
An overview of turbulent transport in tokamaks
Chapter 3 Plasma as fluids
of multispecies edge plasmas
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
Introduction Motivation Objective
Mikhail Z. Tokar and Mikhail Koltunov
Multiscale modeling of hydrogen isotope transport in porous graphite
Presentation transcript:

Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP Association, Wendelsteinstra  e 1, D Greifswald, Germany

Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational physics Why numerical methods? Complexity of equations Example Simulation of experiments To test validity of theory To gain an idea of experimental performance

Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational physics

The Computational Stellarator W7-X Max-Planck-Institut für Plasmaphysik, EURATOM Association

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma Wendelstein 7-X

slow drift of guiding center Max-Planck-Institut für Plasmaphysik, EURATOM Association

Optimized stellarator

Plasma in a computational model 10 Variables: densities, velocities, temperatures 10 billion grid points 100 million time steps 100 FL oating P oint OP erations /sec / timestep / gridpoint or 1 billion teraflop/sec Cray T3E with 784 PE (ca. 75 gigaflop) or 500 years computing NOT VERY REALISTIC Max-Planck-Institut für Plasmaphysik, EURATOM Association

Plasma: Max-Planck-Institut für Plasmaphysik, EURATOM Association

Particle aspect of plasma dominates Max-Planck-Institut für Plasmaphysik, EURATOM Association

Plasma is treated as one fluid with infinite conductivity Max-Planck-Institut für Plasmaphysik, EURATOM Association

MHD is basis for all equilibrium calculations

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Existence in 3D ? Theoretical ? Experimental ? Accessible only by computational models but not before 1975 thus Optimization started with IBM360/91 W7-AS Design 1978 Max-Planck-Institut für Plasmaphysik, EURATOM Association MHD, equilibrium

p constant on (nested) surfaces labelled by s Poloidal and toroidal fluxes are invariant functions, together with m(s) the mass distribution Stationary states of plasma energy (fixed boundary) MHD force balance r and z periodic functions ( Fourier series) Hybrid finite elements in s, (artificial) Time-like iteration Max-Planck-Institut für Plasmaphysik, EURATOM Association Equilibria, VMEC

Max-Planck-Institut für Plasmaphysik, EURATOM Association

NESTOR / NESCOIL codes Iterative combination of VMEC & NESCOIL allows free-boundary computations NEMEC Max-Planck-Institut für Plasmaphysik, EURATOM Association Vacuum fields - free-boundary - coils Boundary Value Problems, Greens Function Last closed magnetic surface (lcms) defines completely interior plasma properties Search for external current distributions (i.e. coils) producing a vacuum field B with boundary conditions on the lcms (n exterior normal)

Max-Planck-Institut für Plasmaphysik, EURATOM Association VMEC

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma configuration given calculate coils to produce it

Max-Planck-Institut für Plasmaphysik, EURATOM Association Coils 1-50

Max-Planck-Institut für Plasmaphysik, EURATOM Association Is a given plasma configuration stable against small pertubations? Find ways to prevent instabilities

Max-Planck-Institut für Plasmaphysik, EURATOM Association Tokamak operation limited by MHD instabilities

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Necessary to design equilibrium with „good“ confinement properties

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Speedup of equilibrium codes due to Peak speed of cpu: 10 fold IBM 360/91 Cray-1S 1980 (same parameters) 12 fold Cray-1S YMP-464(4cpus) fold Cray-1S J916 (16) fold Cray-1S SX4(2) fold Cray-1S T3E-600(784) 1998 New Codes: 24 fold BETA MOMCON/FIT 1980 (same equilibrium) 50 fold MOMCON VMEC fold VMEC VMEC Better algorithms gave a speedup of around ! New hardware ``only`` Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Remarks

Max-Planck-Institut für Plasmaphysik, EURATOM Association Turbulence suppression

Max-Planck-Institut für Plasmaphysik, EURATOM Association Turbulence suppression

Max-Planck-Institut für Plasmaphysik, EURATOM Association Gyrokinetic turbulence simulations

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma-edge physics

Max-Planck-Institut für Plasmaphysik, EURATOM Association Length scales sputtered and backscattered species and fluxes Plasma-wall interaction Molecular dynamics Binary collision approximation Kinetic Monte Carlo Kinetic model Fluid model impinging particle and energy fluxes

Carbon deposition in divertor regions of JET and ASDEX UPGRADE JET ASDEX UPGRADE ASDEX UPGRADE Achim von Keudell (IPP, Garching) V. Rohde (IPP, Garching) Paul Coad (JET) Major topics: tritium codeposition chemical erosion Max-Planck-Institut für Plasmaphysik, EURATOM Association Diffusion in graphite

Max-Planck-Institut für Plasmaphysik, EURATOM Association Diffusion in graphite Internal Structure of Graphite Granule sizes ~ microns Void sizes ~ 0.1 microns Crystallite sizes ~ Ångstroms Micro-void sizes ~ 5-10 Ångstroms Multi-scale problem in space (1cm to Ångstroms) and time (pico-seconds to seconds)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multi-scale ansatz Mikroscales MC Mesoscales KMC Macroscales KMC and Monte Carlo Diffusion (MCD)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics – HCParcas code Developed by Kai Nordlund, Accelarator laboratory, University of Helsinki - Hydrogen in perfect crystal graphite – 960 atoms - Brenner potential, Nordlund range interaction - Berendsen thermostat, 150K to 900K for 100ps - Periodic boundary conditions

Equilibration of pressure with time Max-Planck-Institut für Plasmaphysik, EURATOM Association Time variation of pressure

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics – Simulation at 150K, 900K 150K 900K

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics results two diffusion channels no diffusion across graphene layers (150K – 900K) Lévy flights?

Non-Arrhenius temperature dependence Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamic results

Max-Planck-Institut für Plasmaphysik, EURATOM Association Kinetic Monte Carlo – basic idea  0 = jump attempt frequency (s -1 ) E m = migration energy (eV) T = trapped species temperature (K) Assumptions: - Poisson process (assigns real time to the jumps) - jumps are not correlated

Max-Planck-Institut für Plasmaphysik, EURATOM Association KMC results for transgranular diffusion - strong dependence on void sizes and not on void fraction - saturated H (Tanabe)  0 ~10 5 s -1 and step sizes ~1Å (QM?)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale model Activation energies: trapping-detrapping 2.7 eV desorption 1.9 eV surface diffusion 0.9 eV, jump attempt frequency, jump step length for entering the surface for a solute H atom 2.7 eV  0 ~10 13 s -1 ~35Å porous graphite structure

desorption starts between 900 K and 1200 K Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale model - results

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale model – 900 K, 0.1 ms

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale model – 1500 K, ms

Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale model – diffusion types adsorption- desorption 1.9 eV surface diffusion 0.9 eV

Applications: Low temperature plasmas (methane, RF discharges) Complex plasmas (plasma crystals) Parasitic plasmas in the divertor (radiative ionization) Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC(Particle-in-cell)-method Principle:

n e ~ cm -3 n n ~ cm -3 f RF = MHz potential n e = cm -3, n H 2 = 9.2·10 14 cm -3, n CH 4 = 7·10 14 cm -3, p = Torr (11 Pa) Model system for chemical sputtering: methane plasma (2DX3DV PICMCC multispecies) Collaboration with IEP5, Bochum University (Ivonne Möller) Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge

CH 4 + ion energy distribution electron and CH 4 + ion density Electrons reach electrode only during sheaths collapse Energetic ions at the wall due to acceleration in the sheath Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge

Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge electron velocity distributionelectron-impact ionization rate Energetic electrons oscillate between sheaths Ionization spread over the bulk

Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge electron energy probability function Figure from V.A. Godyak, et al., Phys. Rev. Lett., 65 (1990) 996. Bi-maxwellian distribution due to stochastic heating

Lower electrode Negative charge due to higher electron mobility Levitation in strong sheath electric field Max-Planck-Institut für Plasmaphysik, EURATOM Association Dusty (complex) plasmas

Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: Plasma crystal - full 3D! Quasi - ordered 3D structure Top view

Complex multi-scale physics requires complex computational tools Max-Planck-Institut für Plasmaphysik, EURATOM Association

Thanks!! Ralf Kleiber, Ulrich Schwenn, Volodja Kornilov, Stefan Sorge Mathias Borchardt, Jörg Riemann, Alex Runov, Xavier Bonnin Konstantin Matyash, Neil McTaggart, Manoj Warrier, Francesco Taccogna Andrea Pulss, Andreas Mutzke, Henry Leyh And many contributions from colleagues all over the world