Lecture 61 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.

Slides:



Advertisements
Similar presentations
Network Theorems (AC Circuits)
Advertisements

Lecture 131 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lesson 25 AC Thèvenin Max Power Transfer. Learning Objectives Explain under what conditions a source transfers maximum power to a load. Determine the.
EEE 302 Electrical Networks II
Lecture 111 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 161 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 141 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 11 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 31 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 21 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 131 Maximum Power Transfer (4.4) Prof. Phillips February 28, 2003.
ECE 201 Circuit Theory I1 Maximum Power Transfer Maximize the power delivered to a resistive load.
Lecture 241 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 71 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 121 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 81 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 201 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 231 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 41 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lect19EEE 2021 AC Power Dr. Holbert April 9, 2008.
Lecture 181 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 101 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 191 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 211 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 51 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 171 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Chapter 20 AC Network Theorems.
AC POWER ANALYSIS Tunku Muhammad Nizar Bin Tunku Mansur
ECE 3183 – Chapter 5 – Part D CHAPTER 5 - D1 ECE 3183 – EE Systems Chapter 5 – Part D AC Power, Power Factor.
AC POWER ANALYSIS Tunku Muhammad Nizar Bin Tunku Mansur
Alexander-Sadiku Fundamentals of Electric Circuits
The Effective Value of an Alternating Current (or Voltage) © David Hoult 2009.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
1 Chapter 11 AC Power Analysis 電路學 ( 二 ). 2 AC Power Analysis Chapter Instantaneous and Average Power 11.2Maximum Average Power Transfer 11.3Effective.
AC POWER ANALYSIS Instantaneous & Average Power
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 7 Amplifiers.
Chapter 7 AC Power Analysis
EE212 Passive AC Circuits Lecture Notes 2a EE 212.
Chapter 20 AC Network Theorems. Superposition Theorem The voltage across (or current through) an element is determined by summing the voltage (or current)
1 Lecture #9 EGR 272 – Circuit Theory II Read: Chapter 10 in Electric Circuits, 6 th Edition by Nilsson Chapter 10 - Power Calculations in AC Circuits.
Two-Port Network 1. 2 TWO PORT NETWORKS Two port networks are a useful tool for describing idealized components. The basic device schematics are simple,
EE2010 Fundamentals of Electric Circuits
MAXIMUM POWER TRANSFER THEOREM
EE 1270 Introduction to Electric Circuits Suketu Naik 0 EE 1270: Introduction to Electric Circuits Lecture 11: Maximum Power Transfer Chapter 4 Techniques.
Thévenin and Norton Equivalent Circuits ELEC 308 Elements of Electrical Engineering Dr. Ron Hayne Images Courtesy of Allan Hambley and Prentice-Hall.
Maximum Power Transfer Theorem:
Maximum Power Transfer Theorem
Drill Exercise A linear transformer couples a load consisting of a 360 Ω resistor in series with a 0.25 H inductor to a sinusoidal voltage source, as shown.
AC POWER ANALYSIS. 2 Content Average Power Maximum Average Power Transfer Complex Power Power Factor Correction.
Chapter 4 AC Network Analysis Tai-Cheng Lee Electrical Engineering/GIEE 1.
Lecture 20. AC Power Analysis
1 Lecture #6 EGR 272 – Circuit Theory II Read: Chapter 9 and Appendix B in Electric Circuits, 6 th Edition by Nilsson Using Phasors to Add Sinusoids Sinusoidal.
1 Eeng 224 Chapter 11 AC Power Analysis Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
1 ECE 3301 General Electrical Engineering Section 19 Maximum Power Transfer Theorem.
Fall 2001ENGR-201 Maximum Power Transfer 1 Maximum Power Transfer If a load resistor R L is connected to a linear circuit, what value of R L results in.
Example 4.10 Finding the Thevenin equivalent of a circuit with a dependent source.
Chapter 11 AC Power Analysis
EE301 AC Thèvenin and Max Power Transfer
Chapter 11 AC Power Analysis
Chapter 20 AC Network Theorems.
Chapter 3 Resistive Network Analysis Electrical Engineering/GIEE
Lesson 24 AC Thèvenin Max Power Transfer
THEVENIN THEOREM & NORTON
STEADY-STATE POWER ANALYSIS
ECE 3301 General Electrical Engineering
THEVENIN THEOREM & NORTON
ELL100: INTRODUCTION TO ELECTRICAL ENGG.
Energy Conversion and Transport George G. Karady & Keith Holbert
Electric Circuits I: EE 282
Chapter 11 AC Power Analysis
Presentation transcript:

Lecture 61 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001

Lecture 62 Maximum Average Power Transfer To obtain the maximum average power transfer to a load, the load impedance (Z L ) should be chosen equal to the complex conjugate of the Thevenin equivalent impedance representing the remainder of the network Z L = R L + j XL = R Th - j X Th = Z Th *

Lecture 63 Maximum Average Power Transfer V oc + - Z Th ZLZL Z L = Z Th * Note that ONLY the resistive component of the load dissipates power

Lecture 64 Max Power Xfer: Cases

Lecture 65 Class Examples Extension Exercise E9.5 Extension Exercise E9.6

Lecture 66 Effective or RMS Values Root-mean-square value (formula reads like the name: rms) For a sinusoid:I rms = I M /  2 –For example, AC household outlets are 120 Volts-rms

Lecture 67 Why RMS Values? The effective/rms current allows us to write average power expressions like those used in dc circuits (i.e., P=I²R), and that relation is really the basis for defining the rms value The average power (P) is

Lecture 68 Class Examples Extension Exercise E9.7 Extension Exercise E9.9 Extension Exercise E9.10