Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

Chemical Reaction Engineering
Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Last time 3/6/08. D=v o / V Bioreaction Engineering Wash Out: 1.) Neglect Death Rate and Cell Maintenance 2.) Steady State.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 13 Tuesday 2/19/08 Complex Reactions A +2B --> C 2A + 3C --> D Liquid Phase PFR Liquid Phase CSTR Gas Phase PFR Gas Phase Membrane Reactor Sweep.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
Lecture 8 Tuesday 1/29/08 Block 1: Mole Balances on PFRs and PBRs Must Use the Differential Form Block 2: Rate Laws Block 3: Stoichiometry Pressure Drop:
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Tutorial 4 solutions Lecturer: Miss Anis Atikah Ahmad
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 4, Part 1: Applying the Algorithm to a CSTR H. Scott Fogler, Ph.D.
Chemical Reaction Engineering Chapter 4, Part 3: Pressure Drop in a Packed Bed Reactor.
ITK-330 Chemical Reaction Engineering
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
Collection and Analysis of Rate Data
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L12-1 Review: Thermochemistry for Nonisothermal.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
L15-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L15: Nonisothermal Reactor Example.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Review: Multiple Steady States in CSTR
Pressure drop in PBR Lec 10 week 13. Pressure Drop and the Rate Law We now focus our attention on accounting for the pressure drop in the rate law. to.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
ChE 402: Chemical Reaction Engineering
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
CSTR in series and in parallel
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
P8-8 The elementary gas phase reaction A  B + C is carried out adiabatically in PFR packed with catalyst. Pure A enters the reactor at a volumetric flow.
Steady-state Nonisothermal reactor Design Part I
Tutorials.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Presentation transcript:

Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects

User Friendly Equations Relate T and X or F i

Heat Exchange Elementary gas phase reaction carried out in a PBR The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1. (a)Adiabatic. Plot X, X e, T and the rate of disappearance as a function of V up to V = 40 dm 3. (b)Constant T a. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature is constant at 300 K for V = 40 dm 3. How do these curves differ from the adiabatic case? (c)Variable T a Co-Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 40 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)? (d)Variable T a Counter Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 20 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)?

Mole Balance(1) Rate Law(2) (3) (4)

Stoichiometry(5) (6) Parameters(7) – (15)

Energy Balance Adiabatic and  C P = 0 (16A) Additional Parameters (17A) & (17B) Heat Exchange (16B)

A. Constant T a (17B) T a = 300 Additional Parameters (18B – (20B): T a,, Ua, B. Variable T a Co-Current (17C) C. Variable T a Counter Current (18C) Guess T a at V = 0 to match T a = T ao at exit, i.e., V = V f

User Friendly Equations Relate T and X or F i

Heat Exchange Elementary liquid phase reaction carried out in a PFR The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1.

Multiple reactions with heat effects Multiple Rxns Mole balances – every species (no conversion!) Rates – rate laws net/relative rates Stoichiometry – Heat effects –

Rate is given for 2C, but ΔH R is given for 2A! Make sure it is in respect to A; A needs a coefficient of 1!!!!!!! 1) Mole balance:

2) Rate laws: 3) Stoich: 4) Heat effects: Parameters: