Operations Management

Slides:



Advertisements
Similar presentations
Forecasting OPS 370.
Advertisements

© 1997 Prentice-Hall, Inc. S2 - 1 Principles of Operations Management Forecasting Chapter S2.
Operations Management Forecasting Chapter 4
Bina Nusantara Model Ramalan Peretemuan 13: Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
Prepared by Lee Revere and John Large
4 Forecasting PowerPoint presentation to accompany Heizer and Render
PRODUCTION AND OPERATIONS MANAGEMENT
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Management - 5 th Edition Chapter 11.
1 Learning Objectives When you complete this chapter, you should be able to : Identify or Define:  Forecasting  Types of forecasts  Time horizons 
OPIM 310 –Lecture # 1.2 Instructor: Jose M. Cruz
J0444 OPERATION MANAGEMENT
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 5-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ PERTEMUAN 14.
Operations Management
Roberta Russell & Bernard W. Taylor, III
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting Delivered by: Eng.Mosab I. Tabash Eng.Mosab I. Tabash.
Operations Management
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Mr. David P. Blain. C.Q.E. Management Department UNLV
© 2011 Pearson Education, Inc. publishing as Prentice Hall What is Forecasting?  Process of predicting a future event  Underlying basis of all business.
4 – 1 PSM10 © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render Operations Management, 8e Chapter 4 – Forecasting.
Operations Management
© 2008 Prentice Hall, Inc.4 – 1 Outline – Continued  Time-Series Forecasting  Decomposition of a Time Series  Naive Approach  Moving Averages  Exponential.
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Operations and Supply Chain Management
Forecasting. What is Forecasting? Process of predicting a future event Underlying basis of all business decisions: Production Inventory Personnel Facilities.
Production Planning and Control. 1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models.
© 2006 Prentice Hall, Inc.4 – 1 Forcasting © 2006 Prentice Hall, Inc. Heizer/Render Principles of Operations Management, 6e Operations Management, 8e.
Operations Management
4 Forecasting Demand PowerPoint presentation to accompany
Chapter 4 Forecasting Production Planning Overview  What is forecasting?  Types of forecasts  7 steps of forecasting  Qualitative forecasting.
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 5 1.
Operations Management Chapter 4 Forecasting. So What is Forecasting?  Process of predicting a future event  Forecasting is used for all business decisions.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Management - 6 th Edition Chapter 12.
Copyright ©2016 Cengage Learning. All Rights Reserved
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
Forecasting. Lecture Outline   Strategic Role of Forecasting in Supply Chain Management and TQM   Components of Forecasting Demand   Time Series.
Chapter 4 Class 2.
Production and Operations Management Forecasting session II Predicting the future demand Qualitative forecast methods  Subjective Quantitative.
CHAPTER 2 FORECASTING. LEARNING OBJECTIVES Define forecasting, forecasts approaches Understand the three time horizons Describe, Explain and Apply the.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
1 Forecasting, Planning and Scheduling
Lecture 18 Forecasting (Continued) Books Introduction to Materials Management, Sixth Edition, J. R. Tony Arnold, P.E., CFPIM, CIRM, Fleming College, Emeritus,
DEPARTMENT OF MECHANICAL ENGINEERING VII-SEMESTER PRODUCTION TECHNOLOGY-II 1 CHAPTER NO.4 FORECASTING.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting.
Quantitative Forecasting Methods (Non-Naive)
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
Chapter 12 Forecasting. Lecture Outline Strategic Role of Forecasting in SCM Components of Forecasting Demand Time Series Methods Forecast Accuracy Regression.
4 - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall 4 4 Forecasting PowerPoint presentation to accompany Heizer and Render Operations Management,
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 8 Forecasting To Accompany.
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting Operations Management, 9e.
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations.
4-1 Operations Management Forecasting Chapter Learning Objectives When you complete this chapter, you should be able to : Identify or Define :
© 2008 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 – Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
4 - 1© 2011 Pearson Education Influence of Product Life Cycle  Introduction and growth require longer forecasts than maturity and decline  As product.
4 Forecasting Demand PowerPoint presentation to accompany
4 Forecasting Demand PowerPoint presentation to accompany
Chapter 3 –Forecasting.
4 Forecasting Demand PowerPoint presentation to accompany
© 2006 Prentice Hall, Inc.4 – 1 Operations Management Chapter 4 - Forecasting Chapter 4 - Forecasting © 2006 Prentice Hall, Inc. PowerPoint presentation.
Module 2: Demand Forecasting 2.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Texas A&M Industrial Engineering
Presentation transcript:

Operations Management Chapter 4 - Forecasting PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 6e Operations Management, 8e © 2006 Prentice Hall, Inc.

?? What is Forecasting? Process of predicting a future event Underlying basis of all business decisions Production Inventory Personnel Facilities ??

Forecasting Time Horizons Short-range forecast Up to 1 year, generally less than 3 months Purchasing, job scheduling, workforce levels, job assignments, production levels Medium-range forecast 3 months to 3 years Sales and production planning, budgeting Long-range forecast 3+ years New product planning, facility location, research and development

Influence of Product Life Cycle Introduction – Growth – Maturity – Decline Introduction and growth require longer forecasts than maturity and decline As product passes through life cycle, forecasts are useful in projecting Staffing levels Inventory levels Factory capacity

Company Strategy/Issues Drive-through restaurants Product Life Cycle Introduction Growth Maturity Decline Company Strategy/Issues Best period to increase market share R&D engineering is critical Practical to change price or quality image Strengthen niche Poor time to change image, price, or quality Competitive costs become critical Defend market position Cost control critical Internet Flat-screen monitors Sales DVD CD-ROM Drive-through restaurants Fax machines 3 1/2” Floppy disks Color printers Figure 2.5

Product Life Cycle Introduction Growth Maturity Decline OM Strategy/Issues Product design and development critical Frequent product and process design changes Short production runs High production costs Limited models Attention to quality Forecasting critical Product and process reliability Competitive product improvements and options Increase capacity Shift toward product focus Enhance distribution Standardization Less rapid product changes – more minor changes Optimum capacity Increasing stability of process Long production runs Product improvement and cost cutting Little product differentiation Cost minimization Overcapacity in the industry Prune line to eliminate items not returning good margin Reduce capacity Figure 2.5

Types of Forecasts Economic forecasts Technological forecasts Address business cycle – inflation rate, money supply, housing starts, etc. Technological forecasts Predict rate of technological progress Impacts development of new products Demand forecasts Predict sales of existing product

The Realities! Forecasts are seldom perfect Most techniques assume an underlying stability in the system Product family and aggregated forecasts are more accurate than individual product forecasts

Forecasting Approaches Qualitative Methods Used when situation is vague and little data exist New products New technology Involves intuition, experience e.g., forecasting sales on Internet

Forecasting Approaches Quantitative Methods Used when situation is ‘stable’ and historical data exist Existing products Current technology Involves mathematical techniques e.g., forecasting sales of color televisions

Overview of Qualitative Methods Jury of executive opinion Pool opinions of high-level executives, sometimes augment by statistical models Delphi method Panel of experts, queried iteratively

Overview of Qualitative Methods Sales force composite Estimates from individual salespersons are reviewed for reasonableness, then aggregated Consumer Market Survey Ask the customer

Overview of Quantitative Approaches Naive approach Moving averages Exponential smoothing Trend projection Linear regression Time-Series Models Associative Model

Time Series Forecasting Set of evenly spaced numerical data Obtained by observing response variable at regular time periods Forecast based only on past values Assumes that factors influencing past and present will continue influence in future

Time Series Components Trend Cyclical Seasonal Random

Naive Approach Assumes demand in next period is the same as demand in most recent period e.g., If May sales were 48, then June sales will be 48 Sometimes cost effective and efficient

∑ demand in previous n periods Moving Average Method MA is a series of arithmetic means Used if little or no trend Used often for smoothing Provides overall impression of data over time Moving average = ∑ demand in previous n periods n

Moving Average Example January 10 February 12 March 13 April 16 May 19 June 23 July 26 Actual 3-Month Month Shed Sales Moving Average 10 12 13 (10 + 12 + 13)/3 = 11 2/3 (12 + 13 + 16)/3 = 13 2/3 (13 + 16 + 19)/3 = 16 (16 + 19 + 23)/3 = 19 1/3

Weighted Moving Average Used when trend is present Older data usually less important Weights based on experience and intuition Weighted moving average = ∑ (weight for period n) x (demand in period n) ∑ weights

Weighted Moving Average Weights Applied Period 3 Last month 2 Two months ago 1 Three months ago 6 Sum of weights Weighted Moving Average January 10 February 12 March 13 April 16 May 19 June 23 July 26 Actual 3-Month Weighted Month Shed Sales Moving Average [(3 x 16) + (2 x 13) + (12)]/6 = 141/3 [(3 x 19) + (2 x 16) + (13)]/6 = 17 [(3 x 23) + (2 x 19) + (16)]/6 = 201/2 10 12 13 [(3 x 13) + (2 x 12) + (10)]/6 = 121/6

Potential Problems With Moving Average Increasing n smooths the forecast but makes it less sensitive to changes Do not forecast trends well Require extensive historical data

Exponential Smoothing Form of weighted moving average Weights decline exponentially Most recent data weighted most Requires smoothing constant () Ranges from 0 to 1 Subjectively chosen Involves little record keeping of past data

Exponential Smoothing New forecast = last period’s forecast + a (last period’s actual demand – last period’s forecast) Ft = Ft – 1 + a(At – 1 - Ft – 1) where Ft = new forecast Ft – 1 = previous forecast a = smoothing (or weighting) constant (0  a  1)

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20 New forecast = 142 + .2(153 – 142)

Exponential Smoothing Example Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant a = .20 New forecast = 142 + .2(153 – 142) = 142 + 2.2 = 144.2 ≈ 144 cars

Choosing  The objective is to obtain the most accurate forecast no matter the technique We generally do this by selecting the model that gives us the lowest forecast error Forecast error = Actual demand - Forecast value = At - Ft

Common Measure of Error Mean Absolute Deviation (MAD) MAD = ∑ |actual - forecast| n

Exponential Smoothing with Trend Adjustment When a trend is present, exponential smoothing must be modified Forecast including (FITt) = trend exponentially exponentially smoothed (Ft) + (Tt) smoothed forecast trend

Exponential Smoothing with Trend Adjustment Ft = a(At - 1) + (1 - a)(Ft - 1 + Tt - 1) Tt = b(Ft - Ft - 1) + (1 - b)Tt - 1 Step 1: Compute Ft Step 2: Compute Tt Step 3: Calculate the forecast FITt = Ft + Tt

Exponential Smoothing with Trend Adjustment Example Forecast Actual Smoothed Smoothed Including Month(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt 1 12 11 2 13.00 2 17 3 20 4 19 5 24 6 21 7 31 8 28 9 36 10 Table 4.1

Exponential Smoothing with Trend Adjustment Example Forecast Actual Smoothed Smoothed Including Month(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt 1 12 11 2 13.00 2 17 3 20 4 19 5 24 6 21 7 31 8 28 9 36 10 Step 1: Forecast for Month 2 F2 = aA1 + (1 - a)(F1 + T1) F2 = (.2)(12) + (1 - .2)(11 + 2) = 2.4 + 10.4 = 12.8 units Table 4.1

Exponential Smoothing with Trend Adjustment Example Forecast Actual Smoothed Smoothed Including Month(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt 1 12 11 2 13.00 2 17 12.80 3 20 4 19 5 24 6 21 7 31 8 28 9 36 10 Step 2: Trend for Month 2 T2 = b(F2 - F1) + (1 - b)T1 T2 = (.4)(12.8 - 11) + (1 - .4)(2) = .72 + 1.2 = 1.92 units Table 4.1

Exponential Smoothing with Trend Adjustment Example Forecast Actual Smoothed Smoothed Including Month(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt 1 12 11 2 13.00 2 17 12.80 1.92 3 20 4 19 5 24 6 21 7 31 8 28 9 36 10 Step 3: Calculate FIT for Month 2 FIT2 = F2 + T1 FIT2 = 12.8 + 1.92 = 14.72 units Table 4.1

Exponential Smoothing with Trend Adjustment Example Forecast Actual Smoothed Smoothed Including Month(t) Demand (At) Forecast, Ft Trend, Tt Trend, FITt 1 12 11 2 13.00 2 17 12.80 1.92 14.72 3 20 4 19 5 24 6 21 7 31 8 28 9 36 10 15.18 2.10 17.28 17.82 2.32 20.14 19.91 2.23 22.14 22.51 2.38 24.89 24.11 2.07 26.18 27.14 2.45 29.59 29.28 2.32 31.60 32.48 2.68 35.16 Table 4.1

Exponential Smoothing with Trend Adjustment Example | | | | | | | | | 1 2 3 4 5 6 7 8 9 Time (month) Product demand 35 – 30 – 25 – 20 – 15 – 10 – 5 – 0 – Actual demand (At) Forecast including trend (FITt) Figure 4.3

Trend Projections Fitting a trend line to historical data points to project into the medium-to-long-range Linear trends can be found using the least squares technique y = a + bx ^ where y = computed value of the variable to be predicted (dependent variable) a = y-axis intercept b = slope of the regression line x = the independent variable ^

Actual observation (y value) Least Squares Method Time period Values of Dependent Variable Deviation1 Deviation5 Deviation7 Deviation2 Deviation6 Deviation4 Deviation3 Actual observation (y value) Trend line, y = a + bx ^ Figure 4.4

Actual observation (y value) Least Squares Method Time period Values of Dependent Variable Actual observation (y value) Deviation7 Deviation5 Deviation6 Deviation3 Least squares method minimizes the sum of the squared errors (deviations) Deviation4 Trend line, y = a + bx ^ Deviation1 Deviation2 Figure 4.4

Least Squares Method Equations to calculate the regression variables y = a + bx ^ b = Sxy - nxy Sx2 - nx2 a = y - bx

Least Squares Example Time Electrical Power Year Period (x) Demand x2 xy 1999 1 74 1 74 2000 2 79 4 158 2001 3 80 9 240 2002 4 90 16 360 2003 5 105 25 525 2004 6 142 36 852 2005 7 122 49 854 ∑x = 28 ∑y = 692 ∑x2 = 140 ∑xy = 3,063 x = 4 y = 98.86 b = = = 10.54 ∑xy - nxy ∑x2 - nx2 3,063 - (7)(4)(98.86) 140 - (7)(42) a = y - bx = 98.86 - 10.54(4) = 56.70

Least Squares Example The trend line is y = 56.70 + 10.54x ^ Time Electrical Power Year Period (x) Demand x2 xy 1999 1 74 1 74 2000 2 79 4 158 2001 3 80 9 240 2002 4 90 16 360 2003 5 105 25 525 2004 6 142 36 852 2005 7 122 49 854 Sx = 28 Sy = 692 Sx2 = 140 Sxy = 3,063 x = 4 y = 98.86 The trend line is y = 56.70 + 10.54x ^ b = = = 10.54 Sxy - nxy Sx2 - nx2 3,063 - (7)(4)(98.86) 140 - (7)(42) a = y - bx = 98.86 - 10.54(4) = 56.70

Least Squares Example Trend line, y = 56.70 + 10.54x ^ 160 – 150 – | | | | | | | | | 1999 2000 2001 2002 2003 2004 2005 2006 2007 160 – 150 – 140 – 130 – 120 – 110 – 100 – 90 – 80 – 70 – 60 – 50 – Year Power demand

Least Squares Requirements We always plot the data to insure a linear relationship We do not predict time periods far beyond the database Deviations around the least squares line are assumed to be random

Seasonal Variations In Data The multiplicative seasonal model can modify trend data to accommodate seasonal variations in demand Find average historical demand for each season Compute the average demand over all seasons Compute a seasonal index for each season Estimate next year’s total demand Divide this estimate of total demand by the number of seasons, then multiply it by the seasonal index for that season

Seasonal Index Example Jan 80 85 105 90 94 Feb 70 85 85 80 94 Mar 80 93 82 85 94 Apr 90 95 115 100 94 May 113 125 131 123 94 Jun 110 115 120 115 94 Jul 100 102 113 105 94 Aug 88 102 110 100 94 Sept 85 90 95 90 94 Oct 77 78 85 80 94 Nov 75 72 83 80 94 Dec 82 78 80 80 94 Demand Average Average Seasonal Month 2003 2004 2005 2003-2005 Monthly Index

Seasonal Index Example Jan 80 85 105 90 94 Feb 70 85 85 80 94 Mar 80 93 82 85 94 Apr 90 95 115 100 94 May 113 125 131 123 94 Jun 110 115 120 115 94 Jul 100 102 113 105 94 Aug 88 102 110 100 94 Sept 85 90 95 90 94 Oct 77 78 85 80 94 Nov 75 72 83 80 94 Dec 82 78 80 80 94 Demand Average Average Seasonal Month 2003 2004 2005 2003-2005 Monthly Index 0.957 Seasonal index = average 2003-2005 monthly demand average monthly demand = 90/94 = .957

Seasonal Index Example Jan 80 85 105 90 94 0.957 Feb 70 85 85 80 94 0.851 Mar 80 93 82 85 94 0.904 Apr 90 95 115 100 94 1.064 May 113 125 131 123 94 1.309 Jun 110 115 120 115 94 1.223 Jul 100 102 113 105 94 1.117 Aug 88 102 110 100 94 1.064 Sept 85 90 95 90 94 0.957 Oct 77 78 85 80 94 0.851 Nov 75 72 83 80 94 0.851 Dec 82 78 80 80 94 0.851 Demand Average Average Seasonal Month 2003 2004 2005 2003-2005 Monthly Index

Seasonal Index Example Jan 80 85 105 90 94 0.957 Feb 70 85 85 80 94 0.851 Mar 80 93 82 85 94 0.904 Apr 90 95 115 100 94 1.064 May 113 125 131 123 94 1.309 Jun 110 115 120 115 94 1.223 Jul 100 102 113 105 94 1.117 Aug 88 102 110 100 94 1.064 Sept 85 90 95 90 94 0.957 Oct 77 78 85 80 94 0.851 Nov 75 72 83 80 94 0.851 Dec 82 78 80 80 94 0.851 Demand Average Average Seasonal Month 2003 2004 2005 2003-2005 Monthly Index Forecast for 2006 Expected annual demand = 1,200 Jan x .957 = 96 1,200 12 Feb x .851 = 85 1,200 12