Added science from improved measurements of T and E modes S. A. Bonometto, E. Branchini, C. Burigana, L. P. L. Colombo, J. M. Diego, R. Fabbri, F. K. Hansen,

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge Review ref: Lewis, Challinor, Phys. Rep: astro-ph/
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Neutrinos and Cosmology Alessandro Melchiorri Universita di Roma, La Sapienza NOW 2010, Conca-Specchiulla September 7th 2010.
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
Dust and Molecules in primordial galaxies F.-Xavier Désert, Lab. Astrophysique, Grenoble Erik Elfgren, Dept. of physics, Lulea, Sweden Early dust in the.
University of Rome “La Sapienza”
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
Dark Matter-Baryon segregation in the non-linear evolution of coupled Dark Energy models Roberto Mainini Università di Milano Bicocca Mainini 2005, Phys.Rev.
Component Separation of Polarized Data Application to PLANCK Jonathan Aumont J-F. Macías-Pérez, M. Tristram, D. Santos
1 ACT  Atacama Cosmology Telescope  Funded by NSF  Will measure CMB fluctuations on small angular scales  Probe the primordial power spectrum and the.
Measuring the local Universe with peculiar velocities of Type Ia Supernovae MPI, August 2006 Troels Haugbølle Institute for Physics.
CMB as a physics laboratory
Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D..
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
1 The Connection between Alfvénic Turbulence and the FIP Effect Martin Laming, Naval Research Laboratory, Washington DC
Constraining Galactic Halos with the SZ-effect
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
WMAP and Polarization APS February 16, 2010 In remembrance of Andrew Lange L. Page.
The CMB and Neutrinos. We can all measure the CMB T CMB = \ K CMB approx 1% of TV noise! 400 photons/cc at 0.28 eV/cc.
The Implication of BICEP2 : Alternative Interpretations on its results Seokcheon Lee SNU Seminar Apr. 10 th
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
1 Analytical Spectra of RGWs and CMB Yang Zhang Astrophysics Center University of Science and Technology of China (USTC)
Dark Energy The first Surprise in the era of precision cosmology?
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Forecasting the Axiverse David J. E. Marsh, Berkeley, 1/12/11 Forecasting the Axiverse, David J. E. Marsh, Berkeley, 1/12/111/35 David J. E. Marsh, Edward.
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
CMB as a dark energy probe Carlo Baccigalupi. Outline  Fighting against a cosmological constant  Parametrizing cosmic acceleration  The CMB role in.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Bwdem – 06/04/2005doing cosmology with galaxy clusters Cosmology with galaxy clusters: testing the evolution of dark energy Raul Abramo – Instituto de.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The Cosmic Microwave Background
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
CMB, lensing, and non-Gaussianities
Reionization science from the CMB after Planck Michael Mortonson University of Chicago July 2, 2009.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Cheng Zhao Supervisor: Charling Tao
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Mildly Mixed Coupled cosmological models
Carlo Baccigalupi, SISSA
Precision cosmology, status and perspectives
(some) Future CMB Constraints on fundamental physics
The dark matter sector and new forces mediated by dark energy
“B-mode from space” workshop,
Presentation transcript:

Added science from improved measurements of T and E modes S. A. Bonometto, E. Branchini, C. Burigana, L. P. L. Colombo, J. M. Diego, R. Fabbri, F. K. Hansen, A. Lewis, P. B. Lilje, P. Mazzotta, A. Melchiorri, L. A. Popa, J. A. Rubino-Martin, P. Serra

Reionization Improved measurements of the reionization peak in the EE power spectrum significantly improves estimates of the reionzation optical depth  Improved understanding of the reionization history 2.19x x x x ASAS 2.58x x x x R=T/S 7.56x x x x n run 4.64x x x x  3.92x x x x nsns PlanckBPolPlanckBPol Inhomogeneous reion.Abrupt reion. (3  errors ) Fiducial model parameter

Nature of DE DE equation of state Anomalous DE & DM scaling (1) –Parametrized assuming a constant DM-DE coupling –Current limits  < 0.25 Constraints on other parameters depend on assumptions on DE:  errors 0.06 x0.04 x  =.1 29 x24 x =-8 3.3x x x x A s =2.7x n s =  = H 0 =  c h 2 =  b h 2 =.0223 cDE  CDM cDE  CDM Planck BPol parameter (1) Selected bibliogr.: Wetterich 1995 A&A 301; Amendola 1999 PRD , 2000 PRD ; Gasperini, Piazza, Veneziano 2002 PRD ; Perrotta & Baccigalupi 2002 PRD ; Amendola, Quercellini 2003 PRD ; Mainini, Bonometto 2004 PRL ; Maccio' et al 2004 PRD (n-body simulations)

Neutrino masses  m over all species as extracted from CMB data (assuming equal masses?) Improvement with Bpol because of significant improvement of sensitivity to E-polarization 0.05Cosmic variance limited 0.10BPol 0.24Planck 0.37BRAIN+ClOVER 0.42BICEP+QUaD Error on  m (Ev) Experiment Atmospheric  m~0.05 eV: Bpol clearly sensitive to mass hierarchy

Hydrogen recombination lines Hydrogen recombination lines leave a small imprint on the power spectrum Potentially detectable with Bpol Can be used to study the recombination process

Heavy element abundances Transition lines in heavy elements leave an imprint on the power spectrum  C l is proportional with the optical depth and hence the abundance of a given species Transition lines in neutral C, O, Si, S, Fe will give constraints on abundances in 1 < z < 50 Transitions of ions, CII, NII, OIII will give constraints on abundances in 3 < z < 25 Bpol will measure these abundances with error bars one order of magnitude smaller than Planck

The local SZ-effect The local Sunyaev-Zeldovich effect occurs when CMB photons are scattered on diffuse hot ionized gas in the local universe. Planck will be just at the detection limit for this effect. BPol will allow a more detailed study. Measuring the effect will put constraints on the baryon fraction in form of hot ionized gas, potentially solving the missing baryon problem Predicted SZ effect from local universe

Constraints on Tensor Amplitude Tensors produce T & E, with strong correlation. TE for tensors is very different from TE from scalar Use T & E independently from B to check consistency. Less issues with foregrounds Without BB,  r ~ 0.03 for CV limited up to l <200,  r ~ 0.05 l≥ 20. Need full sky. Planck may confirm it only if r >0.1 (even if it detects B modes)

Questions for discussion DE limits vs. lensing –How to use cosmic shear C l –Which precision needed ? (N-body simul?) DE vs. m Other physics? e.g. primordial magnetic fields M.Giovannini, ClQGrav 23(2006)R1