Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.

Slides:



Advertisements
Similar presentations
ERT 316: REACTION ENGINEERING CHAPTER 2 CONVERSION & REACTOR SIZING
Advertisements

1 - 17/04/2015 Department of Chemical Engineering Lecture 4 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Stoichiometry.
Chemical Reaction Engineering
Conversion and Reactor Sizing
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 3 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 4 Tuesday 1/15/08 Block 1: Mole Balances Size CSTRs and PFRs given –r A =f(X) Block 2: Rate Laws Reaction Orders Arrhenius Equation Block 3: Stoichiometry.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
ISOTHERMAL REACTOR DESIGN
Tutorial 4 solutions Lecturer: Miss Anis Atikah Ahmad
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Kjemisk reaksjonsteknikk Chemical Reaction Engineering
Kjemisk reaksjonsteknikk
1 - 12/09/2015 Department of Chemical Engineering Lecture 6 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Pressure.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
L5-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Relate all V(  ) to XA Put together.
Chemical Reaction Engineering Asynchronous Video Series Chapter 4, Part 1: Applying the Algorithm to a CSTR H. Scott Fogler, Ph.D.
Chemical Reaction Engineering Chapter 4, Part 3: Pressure Drop in a Packed Bed Reactor.
ITK-330 Chemical Reaction Engineering
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
1 - 08/12/2015 Department of Chemical Engineering Lecture 5 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Isothermal reaction design algorithm.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal reactor design
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 2: Reaction Stoichiometry: Batch H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Review: Design Eq & Conversion
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 3 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Presentation transcript:

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 6

Lecture 6 - Tuesday 1/25/2011 2

ReactorDifferentialAlgebraicIntegral CSTR PFR Batch X t PBR X W 3 Previous Lectures

4 A reactor follows an elementary rate law if the reaction orders just happens to agree with the stoichiometric coefficients for the reaction as written. e.g. If the above reaction follows an elementary rate law 2nd order in A, 1st order in B, overall third order Previous Lectures

5

6

7

Today’s lecture Example for Liquid Phase Undergraduate Laboratory Experiment (CH 2 CO) 2 O + H 2 O  2CH 3 COOH A + B  2C Entering Volumetric flow rate v 0 = dm 3 /s Acetic Anhydride7.8% (1M) Water92.2% (51.2M) Elementary with k’1.95x10 -4 dm 3 /(mol.s) Case I CSTRV = 1dm 3 Case II PFRV = dm 3 8

Today’s lecture Example for Gas Phase : PFR and Batch Calculation 2NOCl  2NO + Cl 2 2A  2B + C Pure NOCl fed with C NOCl,0 = 0.2 mol/dm 3 follows an elementary rate law with k = 0.29 dm 3 /(mol.s) Case I PFR withv 0 = 10 dm3/s Find space time, with X = 0.9 Find reactor volume, V for X = 0.9 Case IIBatch constant volume Find the time, t, necessary to achieve 90% conversion. Compare and t. 9

Algorithm for Isothermal Reactor Design 1. Mole Balance and Design Equation 2. Rate Law 3. Stoichiometry 4. Combine 5. Evaluate A. Graphically (Chapter 2 plots) B. Numerical (Quadrature Formulas Chapter 2 and appendices) C. Analytical (Integral Tables in Appendix) D. Software Packages (Appendix- Polymath) 10 Lecture 6

Example: CH 3 CO 2 + H 2 0  2CH 3 OOH 1) Mole Balance: CSTR: 11 A + B  2C

2) Rate Law: 3) Stoichiometry: B F A0 Θ B -F A0 X F B =F A0 ( Θ B -X) AF A0 -F A0 XF A =F A0 (1-X) C02F A0 XF C =2F A0 X 12

13

14

1) Mole Balance: 2) Rate Law: 3) Stoichiometry: 15 A + B  2C

4) Combine: 16

2 NOCl  2 NO + Cl 2 1) Mole Balance: 2) Rate Law: 17 2A  2B + C

3) Stoich: Gas 4) Combine: A  B + ½C 18`1

19

1) Mole Balance: 2) Rate Law: 3) Stoich: Gas, but: 20 Gas Phase 2A  2B + C

4) Combine: 21

Mole Balance Rate Laws Stoichiometry Isothermal Design Heat Effects 22

End of Lecture 6 23