November 8-9, 2005 1 Considerations for Small Chambers A. René Raffray UCSD With contributions from M. Sawan (UW), I. Sviatoslavsky (UW) and X. Wang (UCSD)

Slides:



Advertisements
Similar presentations
ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
Advertisements

HAPL January 11-13, 2005/ARR 1 Overview of the HAPL IFE Dry Wall Chamber Studies in the US Presented by A. René Raffray UCSD With contributions from John.
September 24-25, 2003 HAPL meeting, UW, Madison 1 Armor Configuration & Thermal Analysis 1.Parametric analysis in support of system studies 2.Preliminary.
March 21-22, 2006 HAPL meeting, ORNL 1 Status of Chamber and Blanket Effort A. René Raffray UCSD With contributions from: M. Sawan B. Robson G. Sviatoslavsky.
November 8-9, “Engineering Analysis” of He Retention & Release Experiments to Determine Desirable Engineered W Armor Microstructure A. René Raffray.
April 27-28, 2006/ARR 1 Finalizing ARIES-CS Power Core Engineering Presented by A. René Raffray University of California, San Diego ARIES Meeting UW, Madison.
May 31-June 1, 2001 A. R. Raffray, et al., Assessment of Dry Chamber Walls as Preliminary Step in Defining Key Processes for Chamber Clearing Code 1 Assessment.
June 14-15, 2007/ARR 1 Trade-Off Studies and Engineering Input to System Code Presented by A. René Raffray University of California, San Diego With contribution.
April 4-5, 2002 A. R. Raffray, et al., Modeling Analysis of Carbon Fiber Velvet Tested in RHEPP Ion Beam Facility 1 Modeling Analysis of Carbon Fiber Velvet.
April 4-5, 2002 A. R. Raffray, et al., Chamber Clearing Code Development 1 Chamber Dynamics and Clearing Code Development Effort A. R. Raffray, F. Najmabadi,
March 3-4, 2008/ARR 1 Power Management Technical Working Group: TRL for Heat and Particle Flux Handling A. René Raffray University of California, San Diego.
May 28-29, 2008/ARR 1 Thermal Effect of Off-Normal Energy Deposition on Bare Ferritic Steel First Wall A. René Raffray University of California, San Diego.
April 27-28, 2006/ARR 1 Support and Possible In-Situ Alignment of ARIES-CS Divertor Target Plates Presented by A. René Raffray University of California,
April 10, 2002 A. R. Raffray, et al., Dynamic Chamber Armor Behavior in IFE and MFE 1 Dynamic Chamber Armor Behavior in IFE and MFE A. R. Raffray 1, G.
June7-8, 2001 A. R. Raffray, et al., Completion of Assessment of Dry Chamber Wall Option Without Protective Gas, and Initial Planning Activity for Assessment.
November 8-9, Blanket Design for Large Chamber A. René Raffray UCSD With contributions from M. Sawan (UW), I. Sviatoslavsky (UW) and X. Wang (UCSD)
October 24, Remaining Action Items on Dry Chamber Wall 2. “Overlap” Design Regions 3. Scoping Analysis of Sacrificial Wall A. R. Raffray, J.
ARIES-IFE Assessment of Operational Windows for IFE Power Plants Farrokh Najmabadi and the ARIES Team UC San Diego 16 th ANS Topical Meeting on the Technology.
The main function of the divertor is minimizing the helium and impurity content in the plasma as well as exhausting part of the plasma thermal power. The.
December 12-13, 2007/ARR 1 Power Core Engineering: Design Updates and Trade-Off Studies A. René Raffray University of California, San Diego ARIES Meeting.
Aug. 8-9, 2006 HAPL meeting, GA 1 Advanced Chamber Concept with Magnetic Intervention: - Ion Dump Issues - Status of Blanket Study A. René Raffray UCSD.
Nov 13-14, 2001 A. R. Raffray, et al., Progress Report on Chamber Clearing Code Effort 1 Progress Report on Chamber Clearing Code Development Effort A.
Highlights of ARIES-IFE Study Farrokh Najmabadi VLT Conference Call April 18, 2001 Electronic copy: ARIES Web Site:
Impact of Magnetic Diversion on Laser IFE Reactor Design and Performance A. R. Raffray 1, J. Blanchard 2, A. E. Robson 5, D. V. Rose 4, M. Sawan 2, J.
Aug. 8-9, 2006 HAPL meeting, GA 1 Open Discussion on Advanced Armor Concepts Moderated by A. René Raffray UCSD HAPL Meeting GA, La Jolla, CA August 8-9,
1 Radiation Environment at Final Optics of HAPL Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI HAPL GIMM Conference Call.
August 30, 2001 A. R. Raffray, IFE Dry Chamber Wall Designs 1 IFE Dry Chamber Wall Designs A. R. Raffray and F. Najmabadi University of California, San.
October 27-28, 2004 HAPL meeting, PPPL 1 Overview of the Components of an IFE Chamber and a Summary of our R&D to Develop Them Presented by: A. René Raffray.
April 9-10, 2003 HAPL Program Meeting, SNL, Albuquerque, N.M. 1 Lowering Target Initial Temperature to Enhance Target Survival Presented by A.R. Raffray.
Development of the FW Mobile Tiles Concept Mohamed Sawan, Edward Marriott, Carol Aplin University of Wisconsin-Madison Lance Snead Oak Ridge National Laboratory.
HAPL WORKSHOP Chamber Gas Density Requirements for Ion Stopping Presented by D. A. Haynes, Jr. for the staff of the Fusion Technology Institute.
October 27-28, 2004 HAPL meeting, PPPL 1 Overview of the Components of an IFE Chamber and a Summary of our R&D to Develop Them Presented by: A. René Raffray.
A Plan to Develop Dry Wall Chambers for Inertial Fusion Energy with Lasers Page 1 of 46 DRAFT.
Neutronics Parameters for Preferred Chamber Configuration with Magnetic Intervention Mohamed Sawan Ed Marriott, Carol Aplin UW Fusion Technology Inst.
ARR/April 8, Magnetic Intervention Dump Concepts A. René Raffray UCSD With contributions from: A. E. Robson, D. Rose and J. Sethian HAPL Meeting.
October 27-28, 2004 HAPL meeting, PPPL 1 Thermal-Hydraulic Analysis of Ceramic Breeder Blanket and Plan for Future Effort A. René Raffray UCSD With contributions.
1 Solid Breeder Blanket Design Concepts for HAPL Igor. N. Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI With contributions.
Plan to Develop A First Wall Concept for Laser IFE.
February 5-6, 2004 HAPL meeting, G.Tech. 1 HAPL Blanket Strategy A. René Raffray UCSD With contributions from M. Sawan and I. Sviatoslavsky UW HAPL Meeting.
ITPA - Meeting, Toronto; Session 3 - High Z studies 3 - High-Z studies (Chair - A. Herrmann) 16:25 (0:10) A. Herrmann - Introduction 16:35.
ARIES Workshop Dry Wall Response to the HIB (close-coupled) IFE target Presented by D. A. Haynes, Jr. for the staff of the Fusion Technology Institute.
July 11, 2003 HAPL e-meeting. 1 Armor Design & Modeling Progress A. René Raffray UCSD HAPL e-meeting July 11, 2003 (1)Provide Parameters for Chamber “System”
1 Neutronics Assessment of Self-Cooled Li Blanket Concept Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
August 9, 2006 Design, Fabrication and Maintenance Considerations of Blanket Options for Magnetic Intervention G. Sviatoslavsky, I.N. Sviatoslavsky, M.
Update on Roughening Work Jake Blanchard HAPL MWG Fusion Technology Institute University of Wisconsin e-meeting – July 2003.
1 Neutronics Parameters for the Reference HAPL Chamber Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
1 Some Considerations in Preparation for Starting Study On the Design of a Dry Wall Blanket for HAPL I. N. Sviatoslavsky, M. E. Sawan Fusion Technology.
February 5-6, 2004 HAPL meeting, G.Tech. 1 Chamber Tasks Coordination Presented by A. René Raffray UCSD With contributions from J. Blanchard and the HAPL.
Temperature Response and Ion Deposition in the 1 mm Tungsten Armor Layer for the 10.5 m HAPL Target Chamber T.A. Heltemes, D.R. Boris and M. Fatenejad,
Plasma Processes, Inc. February 5-6, Engineered Tungsten for IFE Dry Chamber Walls HAPL Program Meeting Georgia Institute of Technology Scott O’Dell,
1 Nuclear Assessment of HAPL Chamber with Magnetic Intervension Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
Required Dimensions of HAPL Core System with Magnetic Intervention Mohamed Sawan Carol Aplin UW Fusion Technology Inst. Rene Raffray UCSD HAPL Project.
December 13, 2006 Blanket and Shield Design Considerations for Magnetic Intervention G. Sviatoslavsky, I.N. Sviatoslavsky, M. Sawan (UW), A.R. Raffray.
The Neutronics of Heavy Ion Fusion Chambers Jeff Latkowski and Susana Reyes 15 th Heavy Ion Inertial Fusion Symposium Princeton, NJ June 9, 2004 Work performed.
March 3-4, 2005 HAPL meeting, NRL 1 Assessment of Blanket Options for Magnetic Diversion Concept A. René Raffray UCSD With contributions from M. Sawan.
1 A Self-Cooled Lithium Blanket Concept for HAPL I. N. Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI With contributions.
HAPL June 20-21, Overview of Chamber/Blanket Work Presented by A.R. Raffray UCSD With contributions from CTC Group and MWG Blanket contributions:
Ion Mitigation for Laser IFE Optics Ryan Abbott, Jeff Latkowski, Rob Schmitt HAPL Program Workshop Atlanta, Georgia, February 5, 2004 This work was performed.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
1. Feb 2001:NRL 2. May 2001:NRL 3. Nov 2001:LLNL 4.Apr 2002:GA 5. Dec 2002:NRL 6. Apr 2003:Sandia 7. Sep 2003:Wisconsin 8. Feb 2004:Georgia Tech 9. Jun.
February 5-6, 2004 HAPL meeting, G.Tech HAPL Chambers and Materials Effort Introduction 2. Chamber Tasks Coordination Presented by: A. René Raffray.
1 Radiation Environment at Final Optics of HAPL Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI HAPL Meeting ORNL March.
Can We achieve the TBR Needed in FNF?
Modeling Carbon Diffusion in W-Armor
Welcome to the sixth HAPL meeting
Trade-Off Studies and Engineering Input to System Code
IFE Wetted-Wall Chamber Engineering “Preliminary Considerations”
University of California, San Diego
Aerosol Production in Lead-protected and Flibe-protected Chambers
First Wall Response to the 400MJ NRL Target
Presentation transcript:

November 8-9, Considerations for Small Chambers A. René Raffray UCSD With contributions from M. Sawan (UW), I. Sviatoslavsky (UW) and X. Wang (UCSD) HAPL Meeting University of Rochester's Laboratory for Laser Energetics Rochester, NY November 8-9, 2005

2 Considerations on Chamber Development for Materials Testing with Lower Energy Targets Lower yield targets (e.g ~30 MJ) -Smaller chambers -Revisit armor under reduced threat spectra If space to be used for materials testing, reduced breeding blanket coverage needs to be compensated to provide required tritium -Optimize blanket for breeding (Be as neutron multiplier, 6 Li enrichment, structure minimization) -Flexibility of adjusting breeding for different phases of testing (e.g. changing 6 Li enrichment) -No need for power production If testing regions are closer to micro-explosion and under more intense threat spectra, key issue is how to protect them and make sure no undesirable impurities enter chamber and affect its operation (e.g. target injection and survival, laser propagation)

November 8-9, Temperature History of W for Example Case with 30 MJ Yield and 5.5 m Chamber 1-mm W on 3.5 mm FS at 500 °C Peak temperature reduced to ~1200°C Probably lower than roughening threshold However, He retention is a concern at lower peak temperature.

November 8-9, Would Reduced Threat Spectra Allow for Possibility of Other Armor, e.g. SiC? SiC Properties: -Density = 3200 kg/m -Irradiation effects substantially reduce the conductivity: k irrad /k unirrad ~ 0.5 at ~ 1000°C

November 8-9, Chamber with SiC Armor He retention might be less severe than for W but would require high operating temperature (from initial literature survey, but needs further investigation) Can be bonded to FS Degradation of properties under irradiation a concern Erosion due to sputtering and other processes could lead to T co- deposition in cold regions

November 8-9, Summary Investigation of possibility of performing material testing with a lower gain target in a smaller chamber would include: -Testing requirements and impact on machine -Armor study and development (evaluate W based on latest info from our experiments, and look at other possibilities, e.g. SiC) - Chamber wall -Test regions closer to micro-explosion (challenging) -Blanket development -Impact of testing requirements must be included (loss of breeding coverage but also material choices, e.g. is water required for component testing or support? Is it acceptable if we choose a Li blanket?) - Maximize and provide flexibility of adjusting breeding (not enough tritium is a concern but too much tritium is also a concern!) -No need for power production