Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

1 - 17/04/2015 Department of Chemical Engineering Lecture 4 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Stoichiometry.
Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 21.
Chapter 6 Multiple Reactions.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Last time 3/6/08. D=v o / V Bioreaction Engineering Wash Out: 1.) Neglect Death Rate and Cell Maintenance 2.) Steady State.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 13 Tuesday 2/19/08 Complex Reactions A +2B --> C 2A + 3C --> D Liquid Phase PFR Liquid Phase CSTR Gas Phase PFR Gas Phase Membrane Reactor Sweep.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Tutorial 4 solutions Lecturer: Miss Anis Atikah Ahmad
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Non Isothermal CSTR Chemical Reaction Engineering I Aug Dec 2011 Dept. Chem. Engg., IIT-Madras.
ITK-330 Chemical Reaction Engineering
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
L7-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Liquid Phase Reaction in.
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L12-1 Review: Thermochemistry for Nonisothermal.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
L15-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L15: Nonisothermal Reactor Example.
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
L13-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. Review: Nonisothermal Reactor Design.
Pressure drop in PBR Lec 10 week 13. Pressure Drop and the Rate Law We now focus our attention on accounting for the pressure drop in the rate law. to.
Temperature and Keq Lesson # 11. How Does Temperature Change the Keq? The Keq is a mathematical constant that does not change for concentration, volume,
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
CSTR in series and in parallel
Review: Equilibrium Conversion XAe
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
P8-8 The elementary gas phase reaction A  B + C is carried out adiabatically in PFR packed with catalyst. Pure A enters the reactor at a volumetric flow.
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Review Chapters (1 – 6) CHPE550: Catalysis and Catalytic Processes
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Presentation transcript:

Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns

User Friendly Equations Relate T and X or F i

Heat Exchange Elementary liquid phase reaction carried out in a PFR The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1.

Heat Exchange Elementary gas phase reaction carried out in a PBR The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1. (a)Adiabatic. Plot X, X e, T and the rate of disappearance as a function of V up to V = 40 dm 3. (b)Constant T a. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature is constant at 300 K for V = 40 dm 3. How do these curves differ from the adiabatic case? (c)Variable T a Co-Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 40 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)? (d)Variable T a Counter Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 20 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)?

Mole Balance(1) Rate Law(2) (3) (4)

Stoichiometry(5) (6) Parameters(7) – (15)

Energy Balance Adiabatic and  C P = 0 (16A) Additional Parameters (17A) & (17B) Heat Exchange (16B)

A. Constant T a (17B) T a = 300 Additional Parameters (18B – (20B): T a,, Ua, B. Variable T a Co-Current (17C) C. Variable T a Counter Current (18C) Guess T a at V = 0 to match T a = T ao at exit, i.e., V = V f

Adiabatic Exothermic Endothermic

Heat Exchange Exothermic Endothermic

Gas phase heat effects Example: PBR A ↔ B 1)Mole balance: 2)Rates: 3)Stoich (gas):

4) Heat effects 5) Parameters…. - for adiabatic: U a = 0 - constant T a : - co-current: equations as is - counter-current: Co-current, (T a -T) for counter-current Exothermic Case: Endothermic Case: kCkC T XeXe T kCkC TT XeXe ~1

As T 0 decreases the conversion X will increase, however the reaction will progress slower to equilibrium conversion and may not make it in the volume of reactor that you have. Therefore, for exothermic reactions there is an optimum inlet temperature, where X reaches X eq right at the end of V. However, for endothermic reactions there is no temperature maximum and the X will continue to increase as T increases. As inert flow increases the conversion will increase. However as inerts increase, reactant concentration decreases, slowing down the reaction. Therefore there is an optimal inert flow rate to maximize X. Adiabatic: T X Adiabatic T and X e T0T0 exothermic T X T0T0 endothermic X T X T V1V1 V2V2 X T T0T0 optimum