Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

Single Electron Devices Single-electron Transistors
Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Long-lived spin coherence in silicon with electrical readout
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Entanglement and Quantum Correlations in Capacitively-coupled Junction Qubits Andrew Berkley, Huizhong Xu, Fred W. Strauch, Phil Johnson, Mark Gubrud,
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Dark Current Measurements of a Submillimeter Photon Detector John Teufel Department of Physics Yale University Yale: Minghao Shen Andrew Szymkowiak Konrad.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
HTS Qubits and JJ's using BSCCO Design and Fabrication of HTS Qubits using BSCCO Suzanne Gildert.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Single Electron Transistor
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
SQUID Based Quantum Bits James McNulty. What’s a SQUID? Superconducting Quantum Interference Device.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Chernogolovka, October 2009 Nolinear nonequilibrium phenomena in stacked junctions Vladimir Krasnov Experimental Condensed Matter Physics Fysikum, AlbaNova,
Superconducting qubits
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Dynamics of a Resonator Coupled to a Superconducting Single-Electron Transistor Andrew Armour University of Nottingham.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Applications of Quantum Physics
Figure Schematic depicting tunneling across a normal-insulator- normal (NIN) junction at T=0. (Reproduced with kind permission of J. Hergenrother.)
Gavin W Morley Department of Physics University of Warwick Diamond Science & Technology Centre for Doctoral Training, MSc course Module 2 – Properties.
By Francesco Maddalena 500 nm. 1. Introduction To uphold Moore’s Law in the future a new generation of devices that fully operate in the “quantum realm”
Meet the transmon and his friends
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
J. Brooks, Florida State University, NSF DMR Making “plastics” do new things: Designer molecular crystals can: 2) be metals even without “doping”
Radio-frequency single-electron transistor (RF-SET) as a fast charge and position sensor 11/01/2005.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Single Electron Transistor (SET)
Measuring Quantum Coherence in the Cooper-Pair Box
Low Noise Single Electron Source Jin Zhang, Yury Sherkunov, Nicholas d’Ambrumenil, Boris Muzykantskii University of Warwick, U.K. Conference on Computational.
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
Challenge the future Delft University of Technology Phase-slip Oscillator Alina M. Hriscu, Yuli V. Nazarov Kavli Institute for Nanoscience, TU Delft Acknowledgements.
Sarvajanik College of Engineering & Tech. Project By: Bhogayata Aastha Chamadiya Bushra Dixit Chaula Tandel Aayushi Guided By: Bhaumik Vaidya.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Institute for Photonics and Nanotechnologies
Unbound States A review on calculations for the potential step.
Yakup Boran Spring Modern Atomic Physics
Circuit QED Experiment
Input Stages for Radio Systems (Low Noise Amplifiers) (LNAs)
Superconducting Qubits
Normal metal - superconductor tunnel junctions as kT and e pumps
A Novel 1. 5V CMFB CMOS Down-Conversion Mixer Design for IEEE 802
Spintronics By C.ANIL KUMAR (07AG1A0411).
Amplifiers Classes Electronics-II
Coulomb Blockade and Single Electron Transistor
Mario Palma.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
Amplifiers Classes Electronics-II
High Temperature Superconductivity
Analysis of proximity effects in S/N/F and F/S/F junctions
Presentation transcript:

Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology, University of New South Wales, Sydney

Summary 1.Engineering the properties of superconducting aluminium 2.The single cooper pair transistor (SCPT) 3.Radio frequency operation of the SCPT 4.The superconducting transport processes 5.Microwave spectroscopy

Aluminium Devices Y. Nakamura et al Nature (1999) I. Chiorescu et al Science (2002) Superconducting Qubits Single electron (Cooper-pair) transistors

Aluminium Materials Science Thin films: dramatic change in superconducting properties R. Meservey and P. M. Tedrow J. Appl. Phys. 42, 51 (1971) J. Aumentado et al., PRL 92, (2004) An alternative approach to O 2 doping Tc,  Bc d (nm) B (T) d -1 (nm -1 ) Tc (K) Pauli-limited Bc: spin effects in superconducting SETs. A. J. Ferguson et al. on cond-mat soon

The thin-film SCPT 7 nm 30 nm  ~ 200  V  ~ 300  V  ~ 200  V ~1K of quasiparticle barrier Films evaporated onto LN 2 cooled stage at 0.1 nms -1 Electrically continuous films to 5 nm possible 7 nm 30 nm 7 nm islands used for these devices

Single Cooper pair transistor In a 2-band model E J /E C =0.5 E J,C 1 E J,C 2 CgCg E C =e 2 /(C 1 +C 2 +C g ) h

Why do it? QP poisoning Careful filtering required to avoid non-equilibrium qps These qps tunnel on and ‘poison’ supercurrent 22  1 /  2 ~exp(  2 -  1 /kT) A QP barrier reduces poisoning rate 11 The device itself becomes a qp filter 2121 2222 22 2222 J. Aumentado et al., Phys. Rev. Lett, 92, (2004)

rf-SET Main idea: LC circuit matches high resistance of SET towards 50 Ohms. Amplitude of reflected signal (S 11 ), related to resistance (R) of SET. R. J. Schoelkopf et al., Science (1998) rf (321MHz) Reflected signal either diode or mixer detected.

rf-SCPT I rf <I sw : R~0  I rf >I sw : R>0  Single shot: QP poisoning events J. Aumentado et al., cond-mat\ Resistance is now R eff (Irf, Isw), use to find reflection coefficient in the usual way. Device I: Parameters R = 18 k  E J = 43  eV E c = 77  eV E J /E C = 0.56 Imax Imin

B=0T Diamonds Ec=180  eV R  =71 k  E J =11  eV E J /E C =0.06 2e supercurrent enabled by thin-island 2   2 = 1.05 meV 2e ‘supercurrent’ JQP DJQP Mixer out (a.u.) Device II: Parameters 0 1 Imax Imin

Resonant CP tunnelling D. B. Haviland et al., PRL 73, 1541 (1994) V E(n+2)-E(n)=0 E(n+2)-(E(n)-2eV)=0 Supercurrent occurs when resonance occurs for a CP on both junctions. Resonant Dissipative V 0 A 213 B 234 A DJQP resonance: QPs involved Resonant Dissipative V 0 B Resonant 0 2

Microwave Spectroscopy D. J. Flees et al., Phys. Rev. Lett., 78, 4817 (1997) Y. Nakamura et al., Czech. J. Phys., 46, 2301 (1996) Y. Nakamura et al., Phys. Rev. Lett., 12, 799 (1997) 40GHz -25 dBm -19 dBm Suppression of supercurrent Frequency dependent sidebands on supercurrent Frequency dependent sidebands on resonant CPT No  -waves

PAT + resonant CPT 0 2 00 11 22 P. K. Tien and J. P. Gordon, Phys Rev. 129, 647 (1963) 0 2

Frequency dependence Linear dependence of sidebands observed. Anti-crossing not observable since Ej=11  eV (2.6 GHz) 1  : 186  eV 2  : 193  eV c.f. 180  eV from transport

Power dependence 30 GHz E C =180  eV,  =300  eV, E J =11  eV Multiple  events occur Possibly QP states excited too J. M. Hergenrother et al., Physica B 203, 327 (1994)

Conclusions ~100  eV of QP barrier possible with thin film Reduced QP poisoning allows 2e-periodicity rf-measurement of 2e supercurrent shown Observe individual QP poisoning events Combination of PAT and CP resonant tunneling observed

Future Experimental: investigate charge noise of thin film Experimental: further study individual QP poisoning events Theoretical: look at rf-supercurrent measurement as electrometer (ultimate sensitivity etc)

Switching current measurement Device I: Parameters R = 18 k  E J = 43  eV E c = 77  eV E J /E C = e-periodic Isw