X.Q. Xu 1, R.H. Cohen 1, W.M. Nevins 1, T.D. Rognlien 1, D.D. Ryutov 1, M.V. Umansky 1, L.D. Pearlstein 1, R.H. Bulmer 1, D.A. Russell 2, J.R. Myra 2,

Slides:



Advertisements
Similar presentations
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
X. Q. Xu Lawrence Livermore National Laboratory Acknowledgement: P.W.Xi 1,2, C. H. Ma 1,2, T.Y.Xia 1,3, B.Gui 1,3, G.Q.Li 1,3, J. F. Ma 1,4, A.Dimits 1,
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Exploring Capability to Calculate Heat Loads on Divertors and Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting September 6-7, 2007 Idaho Falls,
November 2004 IAEA Improved operation and modeling of the Sustained Spheromak Physics eXperiment R.D. Wood, B.I. Cohen, D.N. Hill, R.H. Cohen, S.
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
Physics of fusion power
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
ITPA, DivSOL, May 2007: Coster et al Coster, Bonnin, Corrigan, Wiesen, Chankin, Zagorski, Owen, Rognlien, Kukushkin, Fundamenski, … With contributions.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Rotation effects in MGI rapid shutdown simulations V.A. Izzo, P.B. Parks, D. Shiraki, N. Eidietis, E. Hollmann, N. Commaux TSD Workshop 2015 Princeton,
第16回 若手科学者によるプラズマ研究会 JAEA
Reconnection rates in Hall MHD and Collisionless plasmas
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
1 Blobs in the divertor region R. J. Maqueda (Nova Photonics) Although some understanding is emerging on the generation and evolution of blobs from the.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
Integrated Modeling for Burning Plasmas Workshop (W60) on “Burning Plasma Physics and Simulation 4-5 July 2005, University Campus, Tarragona, Spain Under.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Kursus i Plasmafysik, OPL, Risø Juni , 2005 Turbulence, mixing and transport, June 21, 2005  Turbulence, mixing and transport in magnetized plasmas.
Edge-SOL Plasma Transport Simulation for the KSTAR
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
Edge Two Fluids and Gyrokinetic Continuum Simulations Xueqiao Xu Presented at ITER Fusion Simulation Workshop May 16, 2006, Peking University.
Modelling the Neoclassical Tearing Mode
Parallel Correlation of SOL Turbulence S.J. Zweben, F. Scotti, J.W. Ahn, T. Gray, M. Jaworski, S. Kubota, R. Maqueda, N. Mandell, D. Smith, V. Soukhanovskii.
NIMROD Simulations of a DIII-D Plasma Disruption
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Enhanced D  H-mode on Alcator C-Mod presented by J A Snipes with major contributions from M Greenwald, A E Hubbard, D Mossessian, and the Alcator C-Mod.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
N. Bonanomi | Summer schools I anno Ph.D. XXX ciclo | 30/11/2015 / 33 0 Transport in Plasma Edge and Scrape Off Layer Nicola Bonanomi.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
On Edge Plasma, First Wall, and Dust Issues in Fusion Devices
Features of Divertor Plasmas in W7-AS
G.Y.Park4, T.Rhee4, H.Jhang4, P.H.Diamond4,5, B.Dudson6, P.B.Snyder7
Status of integrated core-edge modelling
Finite difference code for 3D edge modelling
Influence of energetic ions on neoclassical tearing modes
20th IAEA Fusion Energy Conference,
Presentation transcript:

X.Q. Xu 1, R.H. Cohen 1, W.M. Nevins 1, T.D. Rognlien 1, D.D. Ryutov 1, M.V. Umansky 1, L.D. Pearlstein 1, R.H. Bulmer 1, D.A. Russell 2, J.R. Myra 2, D.A. D'Ippolito 2, M. Greenwald 3, P.B. Snyder 4, M.A. Mahdavi 4 1) Lawrence Livermore National Laboratory, Livermore, CA USA 2) Lodestar Research Corporation, Boulder, CO USA 3) MIT Plasma Science & Fusion Center, Cambridge, MA USA 4) General Atomics, San Diego, CA USA Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-Points * Presented at the IAEA Fusion Energy Conference Vilamoura, Portugal Nov. 1-5, 2004 * Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 and is partially supported as LLNL LDRD project 03-ERD-09.

IAEA 11/3/04 2 Lodestar MIT GA Goal: understand role of edge-plasmas on limiting high-density operation High density can increase fusion power (P fus ): P fus  n 2 Tokamaks usually disrupt when the Greenwald limit is exceeded –1- current profile shrinkage 2  MHD instability 3  disruption –Greenwald empirical scaling n G = I p /  a 2 –higher density with central peaking implies an edge limit

IAEA 11/3/04 3 Lodestar MIT GA Goal: understand role of edge-plasmas on limiting high-density operation High density can increase fusion power (P fus ): P fus  n 2 Tokamaks usually disrupt when the Greenwald limit is exceeded –1- current profile shrinkage 2  MHD instability 3  disruption –Greenwald empirical scaling n G = I p /  a 2 –higher density with central peaking implies an edge limit Our turbulence/transport simulations provide details of an edge-plasma collapse ==> current profile shrinkage

IAEA 11/3/04 4 Lodestar MIT GA We have progressively improved edge turbulence and transport models together with basic understanding 1.Turbulence behavior with density –turbulence for fixed densities –short-time profile evolution –plasma “blob” formation and dynamics 2.Long-time transport effects –coupling BOUT to 2D UEDGE for wall recycled neutrals –role of impurity radiation 3.X-point & divertor leg effects –X-point shear decorrelation –a new beta-dependent divertor instability Turbulence model is 3D BOUT code Braginskii --- collisional, two-fluids full X-point geo. with separatrix electromagnetic with A ||

IAEA 11/3/04 5 Lodestar MIT GA Saturated fluctuations for 3 densities: high collisionality drives turbulent transport up  & parallel correlation down b) 0.58xN G c) 1.12xN G a) 0.28xN G Base-case (a): radial n i and T e,i profiles from DIII-D expt. tanh fit Two other cases (b,c) with 2x and 4x density together with 0.5x and 0.25x temperatures

IAEA 11/3/04 6 Lodestar MIT GA Large perpendicular turbulence transport can exceed parallel transport at high density  D  as n , D exhibits a nonlinear increase with n  strong-transport boundary crossed Large turbulence reduces E r shear layer allowing large transport to extend inwards

IAEA 11/3/04 7 Lodestar MIT GA Numerous simulations varying density, I p, and B t show strong turbulence consistent with experimental limits P 0 = n 0 T 0 held fixed while n 0 changes q held fixed while I p changes No change w/ B t while I p is fixed Transport coefficients measured at separatrix Greenwald Limit: n G =I p /  a 2            

IAEA 11/3/04 8 Lodestar MIT GA Profile-evolving simulation shows generation and convection of plasma “blobs” as density increases Ion density evolved for ~1 ms from ionization of neutral source Neutral density has spatial form n n = n 0 exp(x/x w ); x w = ( i  cx ) 1/2 ; mimics wall recycling Turbulence develops stronger ballooning character with blobs Poloidal distance (cm) x (cm) n i [x,y,t] (10 19 m -3 ) DIII-D Separatrix

IAEA 11/3/04 9 Lodestar MIT GA Profile-evolving simulation shows generation and convection of plasma “blobs” as density increases n i [x,y,t] - n i [t=0] (10 19 m -3 ) DIII-D Poloidal distance (cm) x (cm) Density (10 19 m -3 ) 1.22 ms 1.17 ms 1.06 ms0.86 ms 0.69 ms Analytic neutral model provides source for density build=up over ~1 ms Rapid convective transport to wall at higher densities

IAEA 11/3/04 10 Lodestar MIT GA Characteristics of localized, intermittent “blobs” determined from detailed diagnostics of simulation data (+d) (-d) (m) Vorticity (MHz) Radial distance from sep. (cm) D turbulence in realistic X-point geometry generates edge blobs Higher density results in stronger turbulence giving robust blobs Vorticity:  =   2  Example shows blobs spinning with monopole vorticity (m), which decays, allowing convective dipole vorticity (+d,-d) to develop Spinning blob Convecting blob Spatial history for 1 blob  d  (+d) Time (  s) Poloidial y (cm) Vorticity as density blob (contours) passes

IAEA 11/3/04 11 Lodestar MIT GA Regimes of blob edge-plasma transport understood through analytic analysis See Poster TH/P6-2, D. A. D’Ippolito, et al., Friday, 16:30 Current continuity eqn:  J = 0 becomes Analysis identifies parallel resistivity & X-point magnetic shear as key in blob velocity vs size, a – Sheath-connected: V r ~ a -2 – X-point J  : V r ~ a -1/3 – And others, … Curvature charge separation Parallel charge transport Perpend. charge transport; X-point shear E ExB/B 2 Ion  B Electron  B

IAEA 11/3/04 12 Lodestar MIT GA For long recycling timescales, we have coupled self-consistent edge turbulence/transport simulations Density profile converges more rapidly than turbulent fluxes a) Midplane density profile evolution b) Midplane diffusion coeff. evolution Coupling iteration index is m TurbulenceTransport BOUT UEDGE profiles fluxes

IAEA 11/3/04 13 Lodestar MIT GA Results show that strong spatial dependence of transport substantially changes SOL and neutral distribution a) Constant D model b) Coupled result Poloidal variation understood from curvature instability a) Constant D model b) Coupled result Wall flux and recycling modifies midplane neutrals Effective diffusion coefficient Neutral density distribution

IAEA 11/3/04 14 Lodestar MIT GA 2D transport modeling shows that large radial convection can lead to an X-point MARFE Mimic strong BOUT transport in UEDGE by a ballooning convective velocity varying from 0 to 300 m/s btwn. sep. & wall Compare no convection and strong convections cases Particle recycling and energy loss to radial wall included Stronger neutral penetration increases density and impurity radiation loss - higher resistivity Self-consistent impurity transport still needed

IAEA 11/3/04 15 Lodestar MIT GA Analysis of simulation shows decorrelation of turbulence between the midplane and divertor leg Cross-correlations of BOUT data by GKV analysis package shows decorrelation by X-point magnetic shear Poloidal/parallel spatial correlation midplane reference Poloidal/parallel spatial correlation divertor reference

IAEA 11/3/04 16 Lodestar MIT GA  T e  New divertor-leg instability driven at “high” plasma-beta (density) by a radial tilt of the divertor plate. Unstable mode effectively does not reach X-point if growth rate is large enough, Im  > v A /L Instability is absent if no plate tilt and increases for larger outward tilt Localized mode exists (Im  > 1) only if plasma beta high enough The mode reduces the divertor heat load without having direct impact on the main SOL ~ ~

IAEA 11/3/04 17 Lodestar MIT GA Summary and ongoing work Increasing edge density (or collisionality) in X-point geometry –drives increasing turbulence that becomes very large “near” n GW –generates robust blobs –strong radial transport hastens edge cooling (neutrals, impurities) X-point magnetic shear –causes decorrelation between midplane and divertor leg, large k  –modifies blob dynamics as well as resistive instabilities Plate (outward) tilt yields new finite-beta divertor instability We are working to: Couple E r for long-time turbulence/transport evolution Include self-consistent impurities Enhance expt. comparisons Simulate divertor-leg instability Develop a 5D kinetic edge code