James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.

Slides:



Advertisements
Similar presentations
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Advertisements

Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron physics with GeV photons at SPring-8/LEPS II
The Physics of Dense Nuclear Matter
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
New Opportunities for Hadron Physics with the Planned PANDA Detector
Centauro and STrange Object Research (CASTOR) - A specialized detector system dedicated to the search for Centauros and Strangelets in the baryon dense,
Agnes Lundborg Open Seminar 9 th of April 2003 in Uppsala on the SweGrid project PANDA computing “a tiny specification”
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Working Group 5 Summary David Christian Fermilab.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
 meson in nucleus at J-PARC Hiroaki Ohnishi RIKEN New Frontiers in QDC Exotic Hadron Systems and Dense Matter – Mini Symposium on Exotic hadrons.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
CHARMONIUM AT Agnes Lundborg QWG workshop Brookhaven June 2006 CHARMONIUM AT Agnes Lundborg Uppsala University Sweden.
H. Koch, QCD-N 06, June 2006 PANDA at the GSI  Introduction  The FAIR-Project and the PANDA-Detector  Physics Program of the PANDA-Collaboration – Hadron.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Valery Dormenev Institute for Nuclear Problems, Minsk
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
J.RItman PANDA Collab. Meeting, May 2003 Status of the PANDA Simulations Event Generator UrQMD p A MVD Resolution Time of Flight Estimates of Data Rates.
1 Experimental particle physics introduction. 2 What holds the world together?
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
1 Guannan Xie Nuclear Modification Factor of D 0 Mesons in Au+Au Collisions at √s NN = 200 GeV Lawrence Berkeley National Laboratory University of Science.
Tetsuro Itabashi (Osaka University) Measurement of proton induced pion pair production in nuclei.
Results from ALICE Christine Nattrass for the ALICE collaboration University of Tennessee at Knoxville.
Dec 2002 Craig Ogilvie 1 Physics Goals of Si Vertex Detector  Physics priorities latter part of this decade –spin carried by gluons:  G vs x –modification.
Know How at LLR Ultra-granular calorimetry AFTER vs CHIC 1F. Fleuret - LLR11/05/ LPSC.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
July 27, 2002CMS Heavy Ions Bolek Wyslouch1 Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider Bolek Wyslouch MIT for the CMS Collaboration.
Systematic measurement of light vector mesons at RHIC-PHNEIX Yoshihide Nakamiya Hiroshima University, Japan (for the PHENIX Collaboration) Quark Matter.
Peculiarities of the PANDA experimental setup Overview of the PANDA detector Particle Tracking: PANDA MVD Particle Identification: PANDA DIRCs Particle.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Ultra-peripheral heavy ion results from CMS Michael Murray, DIS2015, 29 th April 2015 CMS: HIN :
English for young physicists WS 09/10 Niklas Müller
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Nuclear Physics -- Today and Tomorrow From the infinitely strong –
Plans for nucleon structure studies at PANDA
ALICE and the Little Bang
Physics Opportunities with heavy quark system at FAIR
Precision Measurement of η Radiative Decay Width via Primakoff Effect
p p interaction in nuclear matter
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Search for f-N Bound State in Jefferson Lab Hall-B
how is the mass of the nucleon generated?
Presentation transcript:

James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility The PANDA Detector Selected Simulation Results

James Ritman Univ. Giessen Why Are Hadrons So Heavy?

Hadron Masses Protons = (uud) ? 2M u + M d ~ 15 MeV/c 2 M p = 938 MeV/c 2 (P.Kienle) no low mass hadrons (except , K,  ) spontaneously broken chiral symmetry

Spontaneous Breaking of Chiral Symmetry Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below T Curie ) Example:

James Ritman Univ. Giessen Quark Condensate The QCD vacuum is not empty Hadron masses are generated by the strong interaction with (also with gluon condensate) The density of the quark condensate will change as a function of temperature and density in nuclei. This should lead to modifications of the hadron’s spectral properties.

Hadrons in the Nuclear Medium Spectral functions W.Peters et al., Nucl. Phys. A632, 109 (1998).S.Klimt et al., Nucl. Phys. A515, 429 (1990). Reduction of

Hadron Production in the Nuclear Medium c d _ d d u c _ d repulsive attractive D-D- D+D+ d d u d d u d d u d d u d d u  Quark atom Mass of particles may change in dense matter

J/  Absorption in Nuclei J/  absorption cross section in nuclear matter p + A  J/  + (A-1)

James Ritman Univ. Giessen Advantages of p-A Reactions Compared to A-A Much lower momentum for heavy produced particles (2 GeV for “free”) (Effects are smaller at high momentum) Open charm mass region (H atom of (single light quark) Well defined nuclear environment (T and  )

Strange Baryons in Nuclear Fields Hypernuclei open a 3 rd dimension (strangeness) in the nuclear chart -- 3 GeV/c K+K Trigger _  secondary target p Double-hypernuclei: very little data Baryon-baryon interactions:  -N only short ranged (no 1  exchange due to isospin)  impossible in scattering reactions  - (dss) p(uud)   (uds)  (uds)

James Ritman Univ. Giessen The Experimental Facility

HESR

James Ritman Univ. Giessen HESR: High Energy Storage Ring Beam Momentum GeV/c High Intensity Mode: Luminosity 2x10 32 cm -2 s -1 (2x10 7 Hz)  p/p(st. cooling)~10 -4 High Resolution Mode: Luminosity 2x10 31 cm -2 s -1  p/p(e- cooling)~10 -5

James Ritman Univ. Giessen

Target A fiber/wire target will be needed for D physics, A pellet target is conceived: atoms/cm 2 for D=20-40  m 1 mm

James Ritman Univ. Giessen Micro Vertexing 7.2 mio. barrel pixels 50 x 300 μm 2 mio. forward pixels 100 x 150 μm

Central Tracking Detectors example event: pp    4K MVD: (Si) 5 layers Straw-Tubes: 15 skewed double-layers Mini-Drift-Chambers

James Ritman Univ. Giessen PID with DIRC GEANT4 simulation for HESR:

James Ritman Univ. Giessen Open Charm As an example of the Pbar P   (3770)  DD Analysis Peak to background of about 6:1 M inv [GeV]

James Ritman Univ. Giessen Electromagnetic Calorimeter Detector materialPbWO 4 Photo sensorsAvalanche Photo Diodes Crystal size  35 x 35 x 150 mm 3 (i.e. 1.5 x 1.5 R M 2 x 17 X 0 ) Energy resolution 1.54 % /  E[GeV] % Time resolution   130 ps (N.B. with PMT!) Total number of crystals7150

James Ritman Univ. Giessen Detection of Rare Neutral Channels PANDA As an example:  c   (full phase space) Comparison with E835 (PLB 566,45)

James Ritman Univ. Giessen Summary High luminosity cooled p-bar from 1-15 GeV/c Wide physics program including pbar-A reactions Panda collaboration forming

James Ritman Univ. Giessen Tracking Resolution J/       K + K -  (J  ) = 35 MeV/c 2  (  ) = 3.8 MeV/c 2 Example reaction: pp  J/  (  s = 4.4 GeV/c 2 ) Single track resolution Invariant mass resolution