1 Quasi-square-wave ZVS converters A quasi-square-wave ZVS buck Resonant transitions but transistor and diode conduction intervals are similar to PWM Tank.

Slides:



Advertisements
Similar presentations
Basic Electronics Part 2: Power Supply Design
Advertisements

1 Series Resonant Converter with Series-Parallel Transformers for High Input Voltage Applications C-H Chien 1,B-R Lin 2,and Y-H Wang 1 1 Institute of Microelectronics,
EE462L, Spring 2014 DC−DC SEPIC (Converter)
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
EE462L, Fall 2011 DC−DC Buck/Boost Converter
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 State plane trajectory of a parallel-loaded tank circuit.
Quasi-square-wave ZVS converters
AC modeling of quasi-resonant converters Extension of State-Space Averaging to model non-PWM switches Use averaged switch modeling technique: apply averaged.
Chapter 20 Quasi-Resonant Converters
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Active clamp circuits Can be viewed as a lossless voltage-clamp snubber.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures The conventional forward converter Max v ds = 2V g + ringing Limited.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters 20.2 Resonant switch topologies Basic ZCS switch cell: SPST switch SW : Voltage-bidirectional.
1 Parameters for various resonant switch networks.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Reduction of power converter size through increase of switching frequency Increasing.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Soft-switching converters with constant switching frequency With two.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Zero-voltage transition converters The phase-shifted full bridge.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.4 Load-dependent properties of resonant converters Resonant inverter design objectives:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 General Solution for the Steady-State Characteristics of the Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from.
Soft-switching converters with constant switching frequency
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 36 Midterm Exam Averages: all students 78.1 on-campus students 78.3 off-campus.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Parallel resonant dc-dc converter
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Operation of the full bridge below resonance: Zero-current switching Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Chapter 19 Resonant Conversion Introduction 19.1Sinusoidal analysis of resonant converters.
ECE 442 Power Electronics1 Step Up Converter Close the switch to store energy in the inductor L Open the switch to transfer the energy stored in L to the.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Announcements Homework #2 due today for on-campus students. Off-campus students submit.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Upcoming Assignments Preparation for Lecture 2: Read Section 19.1, Sinusoidal analysis.
1 Midterm statistics – On campus students only ECEN 5817 Midterm Exam, Spring 2008 On-campus students Average = 86.3 % Averages by problem: / 35.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Chapter 5 DC to DC Converters (Choppers)
Chapter 8 Switching Power Supplies
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Announcements Correction to HW #2, Problem 19.3 solution Clarification.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Next Homework Assignment Problem 1 Conventional hard-switched flyback.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion For both on-campus and CAETE students: A DVD of recorded lectures from Professor Erickson’s.
Waveforms of the half-wave ZCS quasi-resonant switch cell
Buck-derived full-bridge converter
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 26 Discontinuous conduction mode (DCVM) Occurs at heavy load and low output.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Instrumentation & Power Electronics
1 © Alexis Kwasinski, 2012 Power electronic interfaces Power electronic converters provide the necessary adaptation functions to integrate all different.
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Zero Voltage Switching Quasi-resonant Converters
Chapter 6 Soft-Switching dc-dc Converters Outlines
Chapter 3 DC to DC Converters
ParameterBuckBoostBuck/Boost Pulse Current InputOutput Both Topology Impacts on Component Stress.
19.4 Load-dependent properties of resonant converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.3 Soft switching Soft switching can mitigate some of the mechanisms of switching.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Switching-Mode Regulators
Zero-current Switching Quasi-resonant Converters
POWER ELECTRONICS & ITS APPLICATION
Converter principles and modelling
General Solution for the Steady-State Characteristics of the Series Resonant Converter Type k CCM Mode index k and subharmonic number 
Buck-derived full-bridge converter
Modeling of Dc-dc Boost Converter in Discontinuous Conduction Mode
ECEN 5817 Housekeeping update
Power Semiconductor Systems I
ECEN 5817 Housekeeping I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from Spr. 06. This will make it easy if you choose.
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

1 Quasi-square-wave ZVS converters A quasi-square-wave ZVS buck Resonant transitions but transistor and diode conduction intervals are similar to PWM Tank capacitor is in parallel with all semiconductor devices, hence all semiconductors operate with ZVS Peak currents are increased, and are similar to DCM Peak voltages applied to semiconductors are same as PWM Magnetics are small, and are similar to DCM

2 Quasi-square-wave versions of other converters Boost Flyback Single transistor version of switch is restricted to 0.5 < µ < 1 So for boost, M > 2 For flyback, M > n Boost inductor and flyback transformer are very small, and are similar to DCM devices

3 Interleaved quasi-square-wave buck converters as VRM

4 Waveforms

5 State plane

6 Interval 1 Q1 conduction

7 Interval 2 Resonant transition

8 Interval 3 Diode D2 conduction

9 Interval 4 Resonant Transition

10 Interval 5 D1 conduction

11 Average switch input current

12 Length of switching period

13 Another approach: Find dc component of output current

14 Average output current, p. 2

15 Control input: transistor/diode conduction angle 

16 A way to solve and plot the characteristics

17 Solving, p 2

18 Results: Switch conversion ratio µ vs. F

19 Switch conversion ratio µ vs.  Course website contains Excel spreadsheet (with function macros) that evaluates the above equations and can plot the above characteristics.