 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.

Slides:



Advertisements
Similar presentations
1 Individual Particle Reconstruction CHEP07, Victoria, September 6, 2007 Norman Graf (SLAC) Steve Magill (ANL)
Advertisements

LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Henri Videau LLR Ecole polytechnique - IN2P3/CNRSCalor Calorimetry optimised for jets Henri Videau Jean- Claude Brient Laboratoire Leprince-Ringuet.
PFA-Enhanced Dual Readout Crystal Calorimetry Stephen Magill - ANL Hans Wenzel - FNAL Outline : Motivation Detector Parameters Use of a PFA in Dual Readout.
Particle Flow Template Modular Particle Flow for the ILC Purity/Efficiency-based PFA PFA Module Reconstruction Jet Reconstruction Stephen Magill Argonne.
P. Gay Energy flow session1 Analytic Energy Flow F. Chandez P. Gay S. Monteil CALICE Coll.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
EF with simple multi-particle states Vishnu V. Zutshi NIU/NICADD.
LC Calorimeter Ideas and R&D Opportunities Ray Frey, U. Oregon Cornell, Apr 19, 2002 Physics implications The environment The “energy flow” concept Current.
PFA on SiDaug05_np Lei Xia ANL-HEP. PFA outline Calibration of calorimeter –Done –Not tuned for clustering algorithm Clustering algorithm –Done: hit density.
Some early attempts at PFA Dhiman Chakraborty. LCWS05 Some early attempts at PFA Dhiman Chakraborty2 Introduction Primarily interested in exploring the.
GEM DHCAL Simulation Studies J. Yu* Univ. of Texas at Arlington ALCW, July 15, 2003 Cornell University (*on behalf of the UTA team; S. Habib, V. Kaushik,
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
Individual Particle Reconstruction Norman Graf SLAC April 28, 2005.
1 Benchmarking the SiD Tim Barklow SLAC Sep 27, 2005.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, U.S. LC Calorimeter Group.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
Scintillator (semi)DHCAL? Vishnu Zutshi for. Introduction Can a scintillator (semi)digital calorimeter work? Cell sizes are necessarily 6-12 cm 2 Can.
1/9/2003 UTA-GEM Simulation Report Venkatesh Kaushik 1 Simulation Study of Digital Hadron Calorimeter Using GEM Venkatesh Kaushik* University of Texas.
Track Extrapolation/Shower Reconstruction in a Digital HCAL – ANL Approach Steve Magill ANL 1 st step - Track extrapolation thru Cal – substitute for Cal.
Time development of showers in a Tungsten-HCAL Calice Collaboration Meeting – Casablanca 2010 Christian Soldner Max-Planck-Institute for Physics.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
J-C BRIENT Prague Performances studies of the calorimeter/muon det. e + e –  W + W – at  s=800 GeV Simulation SLAC-Gismo Simulation MOKKA-GEANT4.
Towards an RPC-based HCAL Design Stephen R. Magill Argonne National Laboratory Digital HCAL for an E-Flow Calorimeter Use of RPCs for DHCAL RPC Design.
Introduction Multi-jets final states are of major interest for the LC Physics EFlow : An essential test to design the foreseen detector Software (Algorithms)
Simulation Studies for a Digital Hadron Calorimeter Arthur Maciel NIU / NICADD Saint Malo, April 12-15, 2002 Introduction to the DHCal Project Simulation.
The PFA Approach to ILC Calorimetry Steve Magill Argonne National Laboratory Multi-jet Events at the ILC PFA Approach PFA Goals PFA Requirements on ILC.
Summary of Simulation and Reconstruction Shaomin CHEN (Tsinghua University)  Framework and toolkit  Application in ILC detector design Jupiter/Satellites,
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 1 Paul Dauncey Imperial College London.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
Simulation Studies for a Digital Hadron Calorimeter Arthur Maciel NIU / NICADD Saint Malo, April 12-15, 2002 Introduction to the DHCal Project Simulation.
PFA Template Concept Performance Mip Track and Interaction Point ID Cluster Pointing Algorithm Single Particle Tests of PFA Algorithms S. Magill ANL.
Development of a Particle Flow Algorithms (PFA) at Argonne Presented by Lei Xia ANL - HEP.
UTA GEM DHCAL Simulation Jae Yu * UTA DoE Site Visit Nov. 13, 2003 (*On behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee,
PFAs – A Critical Look Where Does (my) SiD PFA go Wrong? S. R. Magill ANL ALCPG 10/04/07.
Bangalore, India1 Performance of GLD Detector Bangalore March 9 th -13 th, 2006 T.Yoshioka (ICEPP) on behalf of the.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
1 D.Chakraborty – VLCW'06 – 2006/07/21 PFA reconstruction with directed tree clustering Dhiman Chakraborty for the NICADD/NIU software group Vancouver.
Particle-flow Algorithms in America Dhiman Chakraborty N. I. Center for Accelerator & Detector Development for the International Conference.
Particle Flow Review Particle Flow for the ILC (Jet) Energy Resolution Goal PFA Confusion Contribution Detector Optimization with PFAs Future Developments.
1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital.
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
1 IWLC 2010 Geneva Oct.’10David Ward Tests of GEANT4 using the CALICE calorimeters David Ward  Electromagnetic particles (, e) were used to understand.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
Imaging Hadron Calorimeters for Future Lepton Colliders José Repond Argonne National Laboratory 13 th Vienna Conference on Instrumentation Vienna University.
Summary from NIU Workshop and Prague Summary from NIU Workshop and Prague S. R. Magill Physics and Detectors for a 90 to 800 GeV Linear Collider: Third.
ECAL Interaction layer PFA Template Track/CalCluster Association Track extrapolation Mip finding Shower interaction point Shower cluster pointing Shower.
Particle Flow Algorithms Snowmass Workshop, August 14 – 27, 2005 José Repond Argonne National Laboratory.
Intelligent Norman Graf, Steve Magill, Steve Kuhlmann, Ron Cassell, Tony Johnson, Jeremy McCormick SLAC & ANL CALOR ‘06 June 9, 2006 DesignDetector.
SiD Calorimeter R&D Collaboration
Dual Readout Clustering and Jet Finding
CALICE scintillator HCAL
Studies with PandoraPFA
State-of-the-art in Hadronic Calorimetry for the Lepton Collider
Track Extrapolation/Shower Reconstruction in a Digital HCAL
Individual Particle Reconstruction
Towards a Scintillator-based (semi)Digital HCal
EFA/DHCal development at NIU
Simulating the Silicon Detector
Plans for checking hadronic energy
Argonne National Laboratory
Detector Optimization using Particle Flow Algorithm
Status of CEPC HCAL Optimization Study in Simulation LIU Bing On behalf the CEPC Calorimeter working group.
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Sheraton Waikiki Hotel
Towards a Scintillator-based (semi)Digital HCal
Presentation transcript:

 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter for Energy-Flow Jet Reconstruction Stephen R. Magill Argonne National Laboratory

Performance Goals for HCAL - Motivation Physics Requirement : separately id W, Z using dijet mass in hadronic decay mode (~70% BR) -> higher statistics physics analyses Detector Goal : measure jets with energy resolution  /E ~ 30%/  E Optimize HCAL to be used with ECAL and Tracker in E-flow jet reconstruction – Charged particles ~ 60% of jet energy -> Tracker Photons ~ 25% of jet energy -> ECAL Neutral Hadrons ~ 15% of jet energy -> HCAL Calorimeter challenge : charged/neutral shower separation requires high granularity, both transverse and longitudinal, to reconstruct showers in 3-D W, ZW, Z 30%/  E 75%/  E

HCAL Optimization Performance Measures Study absorber type/thickness with JAS, standalone GEANT3 program -> shower containment, hit density, single particle energy resolution Tune transverse granularity and longitudinal segmentation in JAS -> separation of charged/neutral hadron showers Test both analog and digital readout techniques -> comparison of energy/hit density readout methods Develop and optimize E-flow algorithm(s) ->  dijet mass resolution 

Tungsten Copper Uranium SS 4  ’s, 2 K 0 L,  +,  - Standalone GEANT3 Version TESLA TDR Detector Geometry

e + e -  ZZ (500 GeV CM) SD Detector : ECAL HCAL 30 layers 34 layers W(0.25 cm)/Si(0.04 cm) SS(2.0 cm)/Scin(1.0 cm) ~20 X 0, 0.8 I ~40 X 0, 4 I ~5 mm X 5 mm cells ~1 cm X 1 cm cells Modified SD A: ECAL 30 layers W(0.25 cm)/Si(0.04 cm) ~20 X 0, 0.8 I ~1 cm X 1 cm cells HCAL 60 layers W(0.7 cm)/Scin(1.0 cm) ~120 X 0, 4.5 I ~1 cm X 1 cm cells Modified SD B: ECAL 30 layers W(0.25 cm)/Si(0.04 cm) ~20 X 0, 0.8 I ~1 cm X 1 cm cells HCAL 60 layers W(0.7 cm)/Scin(1.0 cm) ~120 X 0, 4.5 I ~3 cm X 3 cm cells Java Analysis Studio (JAS) Modified SD C: ECAL 30 layers W(0.25 cm)/Si(0.04 cm) ~20 X 0, 0.8 I ~1 cm X 1 cm cells HCAL 60 layers W(0.7 cm)/Scin(1.0 cm) ~120 X 0, 4.5 I ~5 cm X 5 cm cells

Neutral particles in CAL -  in ECAL - K L 0, n, nbar in HCAL e + e - -> ZZ – Neutral Particles in CAL

Analog Readout – perfect  cluster Photon Analysis in SD – Analog vs Digital?  /mean ~ 16% 5 mm X 5 mm EM cells Non-linear behavior for dense showers Analog EMCAL Readout

Neutral Hadron Analysis – Analog vs Digital

K L 0 Analysis – SD Detector Analog Readout Analog Readout  /mean ~ 30% Compare to digital 

K L 0 Analysis – SD Detector Digital Readout Digital Readout  /mean ~ 26% Average : ~43 MeV/hit linear behavior for hadron showers Analog EM + Digital HAD x calibration

K L 0 Analysis – Modified SD Analog Readout Analog Readout SD A (1 cm X 1 cm) SD B (3 cm X 3 cm)  /mean ~ 26%  /mean ~ 35%

K L 0 Analysis – Modified SD Digital Readout Digital Readout SD A (1 cm X 1 cm) SD B (3 cm X 3 cm)  /mean ~ 20%  /mean ~ 25%

HCAL (only) Digital Results  /mean ~ 28%  /mean ~ 32% SD SD A SD B 1 cm X 1 cm 3 cm X 3 cm

K L 0 Analog vs Digital – Scintillator vs Gas From A. Sokolov, CALICE Scintillator Analog/Digital Scintillator Analog/RPC Digital

Compensation in Digital HCAL?

Neutral Hadron Measurement Summary

No-Clustering E-Flow Algorithm 1 st step - Track extrapolation thru Cal – substitute for Cal cells in road (core + tuned outlyers) – Cal granularity optimized for separation of charged/neutral clusters 2 nd step - Photon finder (use analytic long./trans. energy profiles) 3 rd step - Jet Algorithm on Tracks and Photons 4 th step – include remaining Cal cells in jet (cone?) Systematic Approach : Tracks first (60%), Photons next (25%), Neutral hadrons last (15%)

Track Extrapolation/Cal Cell Substitution

Starting studies of HCAL optimization for E-Flow jet analysis - optimal transverse cell size and longitudinal segmentation - optimal absorber material/thickness - analog vs digital readout Starting development of E-Flow analysis tools - Track extrapolation -> cal cell substitution analysis - photon analysis Beginning readout R&D -Scintillator in HCAL -RPC Summary