Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D-17491.

Slides:



Advertisements
Similar presentations
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Advertisements

Plasma Medicine in Vorpal Tech-X Workshop / ICOPS 2012, Edinburgh, UK 8-12 July, 2012 Alexandre Likhanskii Tech-X Corporation.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
The removal of surface atoms due to energetic particle bombardment
MODELING OF H 2 PRODUCTION IN Ar/NH 3 MICRODISCHARGES Ramesh A. Arakoni a), Ananth N. Bhoj b), and Mark J. Kushner c) a) Dept. Aerospace Engr, University.
OPTIMIZING THE PERFORMANCE OF PLASMA BASED MICROTHRUSTERS* Ramesh A. Arakoni, a) J. J. Ewing b) and Mark J. Kushner c) a) Dept. Aerospace Engineering University.
NUMERICAL INVESTIGATION OF WAVE EFFECTS IN HIGH-FREQUENCY CAPACITIVELY COUPLED PLASMAS* Yang Yang and Mark J. Kushner Department of Electrical and Computer.
Computational Modeling Capabilities for Neutral Gas Injection Wayne Scales and Joseph Wang Virginia Tech Center for Space Science and Engineering.
1 Particle-In-Cell Monte Carlo simulations of a radiation driven plasma Marc van der Velden, Wouter Brok, Vadim Banine, Joost van der Mullen, Gerrit Kroesen.
THE WAFER- FOCUS RING GAP*
Chamber Dynamic Response Modeling Zoran Dragojlovic.
WAFER EDGE EFFECTS CONSIDERING ION INERTIA IN CAPACITIVELY COUPLED DISCHARGES* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department.
MAGNETICALLY ENHANCED MULTIPLE FREQUENCY CAPACITIVELY COUPLED PLASMAS: DYNAMICS AND STRATEGIES Yang Yang and Mark J. Kushner Iowa State University Department.
EDGE EFFECTS IN REACTIVE ION ETCHING: THE WAFER- FOCUS RING GAP* Natalia Yu. Babaeva and Mark J. Kushner Iowa State University Department of Electrical.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP.
INVESTIGATIONS OF MAGNETICALLY ENHANCED RIE REACTORS WITH ROTATING (NON-UNIFORM) MAGNETIC FIELDS Natalia Yu. Babaeva and Mark J. Kushner University of.
MODELING OF MICRODISCHARGES FOR USE AS MICROTHRUSTERS Ramesh A. Arakoni a), J. J. Ewing b) and Mark J. Kushner c) a) Dept. Aerospace Engineering University.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
Chapter 5 Diffusion and resistivity
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Status and Prospects of Nuclear Fusion Using Magnetic Confinement Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany Invited Talk given.
Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Particle-based Model of full-size ITER-relevant Negative Ion Source
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
Why plasma processing? (1) UCLA Accurate etching of fine features.
第16回 若手科学者によるプラズマ研究会 JAEA
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
1 of 22A.V.Chankin & D.P.Coster, 18 th PSI Conference, Toledo, Spain, 29 May 2008 Comparison of 2D Models for the Plasma Edge with Experimental Measurements.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
Plasma-wall interactions during high density operation in LHD
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Edge-SOL Plasma Transport Simulation for the KSTAR
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
CONTROL OF ELECTRON ENERGY DISTRIBUTIONS THROUGH INTERACTION OF ELECTRON BEAMS AND THE BULK IN CAPACITIVELY COUPLED PLASMAS* Sang-Heon Song a) and Mark.
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
GOLEM operation based on some results from CASTOR
of magnetized discharge plasmas: fluid electrons + particle ions
CMS HIP Plasma-Wall Interactions – Part II: In Linear Colliders Helga Timkó Department of Physics University of Helsinki Finland.
PROPERTIES OF UNIPOLAR DC-PULSED MICROPLASMA ARRAYS AT INTERMEDIATE PRESSURES* Peng Tian a), Chenhui Qu a) and Mark J. Kushner a) a) University of Michigan,
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
Transport analysis of the LHD plasma using the integrated code TASK3D A. Wakasa, A. Fukuyama, S. Murakami, a) C.D. Beidler, a) H. Maassberg, b) M. Yokoyama,
Introduction to Plasma-Surface Interactions Lecture 5 Sputtering.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Unstructured Meshing Tools for Fusion Plasma Simulations
PLASMA DYNAMICS AT THE IONIZATION FRONT OF HIGH
of multispecies edge plasmas
Generation of Toroidal Rotation by Gas Puffing
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
Introduction Motivation Objective
1.6 Glow Discharges and Plasma
Mikhail Z. Tokar and Mikhail Koltunov
Multiscale modeling of hydrogen isotope transport in porous graphite
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Max-Planck-Institut für Plasmaphysik, EURATOM Association Ralf Schneider and K. Matyash, N. McTaggart, M. Warrier, X. Bonnin, A. Runov, M. Borchardt, J. Riemann, A. Mutzke, H. Leyh, D. Coster, W. Eckstein, R. Dohmen and many other colleagues from USA, Europe and Japan

Strongly non-linear parallel heat conduction by Coulomb collisions: Extreme anisotropy: Max-Planck-Institut für Plasmaphysik, EURATOM Association Magnetic confinement

Can we manage the power load at the plates? Development of computational tools to model this power loading. Estimate of power load: ! Max-Planck-Institut für Plasmaphysik, EURATOM Association Basic question

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma-edge physics

Max-Planck-Institut für Plasmaphysik, EURATOM Association Length scales

Carbon deposition in divertor regions of JET and ASDEX UPGRADE JET ASDEX UPGRADE ASDEX UPGRADE Achim von Keudell (IPP, Garching) V. Rohde (IPP, Garching) Paul Coad (JET) Major topics: tritium codeposition chemical erosion Max-Planck-Institut für Plasmaphysik, EURATOM Association Diffusion in graphite

Max-Planck-Institut für Plasmaphysik, EURATOM Association Diffusion in graphite Internal Structure of Graphite Granule sizes ~ microns Void sizes ~ 0.1 microns Crystallite sizes ~ Ångstroms Micro-void sizes ~ 5-10 Ångstroms Multi-scale problem in space (1cm to Ångstroms) and time (pico-seconds to seconds)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics – HCParcas code Developed by Kai Nordlund, Accelarator laboratory, University of Helsinki - Hydrogen in perfect crystal graphite – 960 atoms - Brenner potential, Nordlund range interaction - Berendsen thermostat, 150K to 900K for 100ps - Periodic boundary conditions

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics – Simulation at 150K, 900K 150K 900K

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamics results Two diffusion channels No diffusion across graphene layers (150K – 900K) Lévy flights?

Non-Arrhenius temperature dependence Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular dynamic results

Assume: - Poisson process (assigns real time to the jumps) - The jumps are not correlated  0 = Jump attempt frequency (s -1 ) E m = Migration Energy (eV) T = Trapped species temperature (K) Max-Planck-Institut für Plasmaphysik, EURATOM Association Kinetic Monte Carlo - description BKL algorithm (residence time algorithm A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17 (1975) 10 Theoretical foundations of dynamical Monte Carlo simulations, K.A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95 (2) (1991)

Max-Planck-Institut für Plasmaphysik, EURATOM Association KMC (DiG) results K.L. Wilson et al., Trapping, detrapping and release of implanted hydrogen isotopes, Nucl. Fusion 1: Suppl. S Strong dependence on void sizes and not on void fraction - Saturated H (Tanabe)  0 ~10 5 s -1 and step sizes ~1Å

TRIM, TRIDYN: much faster than MD (simplified physics) - very good match of physical sputtering - dynamical changes of surface composition Max-Planck-Institut für Plasmaphysik, EURATOM Association Binary collision approximation

n e ~ cm -3 n n ~ cm -3 f RF = MHz potential n e = cm -3, n H 2 = 9.2·10 14 cm -3, n CH 4 = 7·10 14 cm -3, p = Torr (11 Pa) Model system for chemical sputtering: methane plasma (2DX3DV PICMCC multispecies) Collaboration with IEP5, Bochum University (Ivonne Möller) Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge

CH 4 + ion energy distribution electron and CH 4 + ion density Electrons reach electrode only during sheaths collapse Energetic ions at the wall due to acceleration in the sheath Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge

Lower electrode Negative charge due to higher electron mobility Levitation in strong sheath electric field Max-Planck-Institut für Plasmaphysik, EURATOM Association Dusty (complex) plasmas

Max-Planck-Institut für Plasmaphysik, EURATOM Association PIC simulation: Plasma crystal - full 3D! Quasi - ordered 3D structure Top view

electric thrusters: exhaust velocity larger than in conventional chemical systems --> much lower mass of propellant exhaust cathode anode (neutral propellant) stationary plasma thruster(electron closed drift or Morozov type) Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma thruster SPT-100 j e xB forces toward the exhaust producing the thrust radial B-field: e-confined; e-impact ionization increased positive ions not confined; accelerated by E field SPT-100 parameters dimensions: R in =30 mm, R out =50 mm, L=25 m mass flow rate and power: dm/dt=5 mg/s, P=300W discharge parameters: B max =200 G,  V=300 V, I d =3.2 propulsion performances: I sp =1600 s, T=40 mN,  T =0.33

Computational model parameters - Geometrical reducing factor: f=0.2 - Grid points: 50x40 - Cell size:  x=3 D - Time step:  t=  p -1 /3 - Weight of macroparticle: w p =10 5, w N = Number of macroparticles: N= Number of time step to reach staedy state: N t = Computational time: 30 hh on 2.5 Ghz - secondary electrons emitted from the wall (BN, Al 2 O 3, SiO 2 ): probabilistic model - all collisions included - ion-wall sputtering: TRIDYN - geometrical scaling: constant Knudsen ( /L) and Larmor (rL/L) parameters electron density Francesco Taccogna, University of Bari Max-Planck-Institut für Plasmaphysik, EURATOM Association 2D-3D axisymmetric fully kinetic PIC model

electron density Francesco Taccogna, University of Bari Max-Planck-Institut für Plasmaphysik, EURATOM Association 2D-3D axisymmetric fully kinetic PIC model potential

Max-Planck-Institut für Plasmaphysik, EURATOM Association Divertors Tokamak Stellarator (W 7-X) pump Plasma core pump

B2-Eirene, UEDGE, … Finite volume codes for mixed conduction convection problems - Neutral physics (momentum losses, volume recombination, operational scenarios, geometry optimization) - Impurities (radiation, flows) Max-Planck-Institut für Plasmaphysik, EURATOM Association 2D fluid codes

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular physics

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular physics: quite high recombination rates

Max-Planck-Institut für Plasmaphysik, EURATOM Association Molecular physics

Inclusion of drifts and currents: flows, radial electric field Radial electric field: Closed field lines – neoclassical Open field lines – SOL physics Radial electric field shear layer close to separatrix (flow pattern) Potential Max-Planck-Institut für Plasmaphysik, EURATOM Association 2D fluid codes

Plasma Divertor Max-Planck-Institut für Plasmaphysik, EURATOM Association Divertor Structures

Max-Planck-Institut für Plasmaphysik, EURATOM Association Plasma Wendelstein 7-X

3D effects in stellarators (W7-X) plasma core (non- ergodic) ergodic region island (non- ergodic) Divertors Max-Planck-Institut für Plasmaphysik, EURATOM Association 3D transport in the plasma edge

Scrape Off Layer Plasma core Wall Parallel direction Radial direction Ergodic region Enhancement of radial transport due to contribution from parallel transport Rechester Rosenbluth, Physical Review Letters, 1978 Electron temperature r Max-Planck-Institut für Plasmaphysik, EURATOM Association Transport in an ergodic region

Kolmogorov length L K is a measure of field line ergodicity exponential divergence Typical value in W7-X : L K = 10 – 30 m Max-Planck-Institut für Plasmaphysik, EURATOM Association Kolmogorov length

central cut backward cut forward cut x1x1 x2x2 x3x3 One coordinate aligned with the magnetic field to minimize numerical diffusion Area is conserved Use a full metric tensor Local system shorter than Kolmogorov length to handle ergodicity Max-Planck-Institut für Plasmaphysik, EURATOM Association Local magnetic coordinate system

1) Optimized mesh (finite-difference scheme)  2) Monte-Carlo combined with Interpolated Cell Mapping High accuracy transformation of the perpendicular coordinates of a particle (mapping between cuts) needed! (bicubic spline interpolation) Solutions: Problem: numerical diffusion induced by interpolation on the interface Max-Planck-Institut für Plasmaphysik, EURATOM Association Local magnetic coordinate system

Field line tracing code Triangulation code Metric coefficients code Transport code Mesh data file Neighborhood array data file Metric coefficients data file Temperature solution Magnetic field configuration data file Mesh optimization Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational process

Max-Planck-Institut für Plasmaphysik, EURATOM Association 3D solution for W7-X

vacuum finite-  Island structures smeared out Max-Planck-Institut für Plasmaphysik, EURATOM Association Vacuum and finite  solutions on a cut

Normalized field line length T (eV) Ergodic effects lead to 3D modulation of long open field lines Cascading of energy from ergodic to open field lines Max-Planck-Institut für Plasmaphysik, EURATOM Association W7-X finite  case

Feeding fluxes determined by field line length No power load problem for W7-X Parallel flux density Length of open field line (m) Flux density (MW/m 2 ) Power load Length of open field line (m) Vacuum case Finite β case Engineering limit Vacuum case Finite β case Flux density (MW/m 2 ) Max-Planck-Institut für Plasmaphysik, EURATOM Association Power loading on the divertor plates

Complex multi-scale physics requires complex computational tools Max-Planck-Institut für Plasmaphysik, EURATOM Association Summary