Y. Yamazaki, RIKEN Advanced Science Institute 仁科月例コロキウム 2011/11/22.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Protonium Pn = (p + p - ) α Formation in a Collision Between Slow Anti-Proton (p - ) and Muonic Hydrogen: p - + H μ => (p + p - ) α + μ - R. A. Sultanov.
20th Century Discoveries
Antimatter: Past, Present & Future Presentation By Paramita Barai In Course Phys 6410: Introductory Nuclear and Particle Physics Instructor: Dr. Xiaochun.
Discrete Space-Time Symmetries Xiao-Gang He USTC, Nanakai, and NTU 1. Discrete Space-Time Symmetries 2. The Down Fall of Parity P Symmetry 3. The Down.
1 FK7003 Lecture 8 ● CP -violation ● T -violation ● CPT invariance.
Cosmology The Origin and Future of the Universe Part 2 From the Big Bang to Today.
Early Universe Chapter 38. Reminders Complete last Mallard-based reading quiz before class on Thursday (Ch 39). I will be sending out last weekly reflection.
Outlook towards future Polish participation in the new Accelerator Facility Tomasz Matulewicz Warsaw University.
Nuclear Physics UConn Mentor Connection Mariel Tader.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Antihydrogen Spectroscopy David Christian Fermilab November 17, 2007.
Parity Conservation in the weak (beta decay) interaction
Chapter 29 Exploring the Early Universe. Guiding Questions 1.Has the universe always expanded as it does today? 2.What is antimatter? How can it be created,
Astro-2: History of the Universe Lecture 12; May
Particles & Antiparticles
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
Atomic Physics with Ultra-slow Antiprotons p. 1 E. Widmann Atomic Physics with Ultra-Slow Antiprotons E. Widmann ASACUSA collaboration, University of Tokyo.
Quarks, Leptons and the Big Bang particle physics  Study of fundamental interactions of fundamental particles in Nature  Fundamental interactions.
E. Widmann, Antihydrogen GS-HFS, p. 1 LEAP03, Yokohama, March 4, 2003 Measurement of the Hyperfine Structure of Antihydrogen E. Widmann, R.S. Hayano, M.
Equivalence principle, antigravity of antimatter and all that Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Antigravity and Equivalence principle Savely G Karshenboim Pulkovo observatory (ГАО) (St. Petersburg) and Max-Planck-Institut für Quantenoptik (Garching)
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
Introduction to CERN David Barney, CERN Introduction to CERN Activities Intro to particle physics Accelerators – the LHC Detectors - CMS.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 30: Particle Physics Fundamental.
1 Antimatter 1Antimatter and the Universe 2Antimatter in the Laboratory 3Antimatter in Daily Life.
1 CANADA’S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution.
Antihydrogen Physics with ALPHA CERN – May 2014 Mike Charlton, Physics, Swansea University UK Antihydrogen Physics with ALPHA.
Description and First Application of a New Technique to Measure the Gravitational Mass of Antihydrogen Joel Fajans U.C. Berkeley and the ALPHA Collaboration.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Wednesday, Jan. 25, 2012PHYS 3446 Andrew Brandt 1 PHYS 3446 – Lecture #2 Wednesday, Jan Dr. Brandt 1.Introduction 2.History of Atomic Models 3.Rutherford.
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
A Modified Rishon Model Patrick S. Walters AAPT-CPS Spring Meeting 2009 Penn State – Mont Alto March 27 th – 28 th 2009.
Chapter 17 The Beginning of Time. Running the Expansion Backward Temperature of the Universe from the Big Bang to the present (10 10 years ~ 3 x
Atomic Physics – Part 3 Ongoing Theory Development To accompany Pearson Physics PowerPoint presentation by R. Schultz
THE ALPHA COLLABORATION University of California
Introduction to CERN Activities
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
SPSC 19 January 2010 J.S. Hangst THE ALPHA COLLABORATION University of Aarhus, Denmark Auburn University, USA University of British Columbia, Canada University.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research (ICRR) the University of Tokyo KAGRA face to face meeting University of Toyama, Toyama, Japan 3 August.
25th. February 2011 CERN Detector Seminar P.D.Bowe ALPHA ANTIHYDROGEN TRAPPED Paul D. Bowe University of Århus, Denmark ON BEHALF OF THE ALPHA COLLABORATION.
CPT and Lorentz violation as signatures for Planck-scale physics Discrete08.
Non-Neutral Plasma Physics and Antihydrogen Joel Fajans U.C. Berkeley and the ALPHA Collaboration G. Andresen, W. Bertsche, A. Boston, P. D. Bowe, C. L.
Angels, demons, CERN Rolf Landua Research Physicist (antimatter) Head of Education Group Rolf Landua Research Physicist (antimatter) Head of Education.
Michael Charlton -LAL Lecture Physics With Low Energy Antiparticles LAL Lecture.
What are the Elementary Constituents of Matter? What are the forces that control their behaviour at the most basic level?
Ялта Конференция Yalta-, Univ. of Tokyo, Ryo FUNAKOSHI Univ. of Tokyo Ryo FUNAKOSHI ATHENA collaboration ATHENA: a High Performance detector for.
Apparatus to Explore the Gravitational Interactions of antiatomS: the R&D programme CERN G. Bonomi (now at Brescia University), M. Doser, R. Landua, A.
Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare.
Antihydrogen Charge Measurements Joel Fajans U.C. Berkeley and the ALPHA Collaboration M. Ahmadi, C. Amole, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche,
Low Energy Physics : Cold AntiHydrogen. Alessandro Variola, S.Dagoret, F.Zomer, J.Haissinski, M.Urban Seminaire : Mike Charlton.
Testing antimatter gravity: the Aegis experiment at Cern Phd Student: Michele Sacerdoti Phd Workshop: 12-13/10/2015 Supervisors: Fabrizio Castelli, Marco.
The ALPHA Collaboration
Cold Antimatter at CERN
Constraining the Properties of the Antiproton
ASACUSA Status and Outlook: antihydrogen
Thanks to CERN AD Staff! Project ALPHA
Mike Charlton Physics, Swansea
BEAMLINE MAGNETS FOR ALPHA-G
Frontiers of fundamental physics
Early Universe.
Production and Storage of Polarized H2, D2 and HD Molecules
Technician’s Notes Activity 10S Software Based 'Bubble chamber photographs'
Summer Student Sessions
Presentation transcript:

Y. Yamazaki, RIKEN Advanced Science Institute 仁科月例コロキウム 2011/11/22

1. A brief look back of antiparticle/antimatter 2. CPT symmetry: the fundamental question 3. What to measure, what to prepare 4. Manipulation of H : two schemes from latest results 5. Future 6. Summary Contents

 1928: Dirac relativistic theory of electron  1933: discovery of e +  1955: discovery of p  1965: discovery of d  1973: discovery of 3 He  (1982: LEAR started  1 st storage ring, pure p )  1986: p trapped (He double ionization)  1989: p cooled with e -  (1991: long-lived p He + )  1996: GeV H (LEAR shut down)  (1999: AD operation)  2002: cold H  2008: compression of p cloud  2010: trapping H, first step to H beam  2011 & beyond: H spectroscopy (HF & 1S-2S) ( 4 He, AMS2), ELENA 15e + s 60 p s 31 p trapped 11 H s A few extracted 38 trapped H s

1. A brief look back of antiparticle/antimatter 2. CPT symmetry: the fundamental question 3. What to measure, what to prepare 4. Manipulation of H : two schemes from latest results 5. Future 6. Summary Contents

 P (Parity inversion) and CP(Charge conjugation and P) symmetries are broken although both were believed to be conserved (e.g.,  -decay & K 0 - K 0 decay, res.).  CPT symmetry is the last one still escaping from our chase!  The standard model constructed on flat space-time predicts that the CPT is conserved, which however may not conserved under curved space-time with gravity. Actually, no quantum theory taking into account gravity has been developed yet.  Further,

A in space If the bigbang scenario is true, and the same amount of matter and antimatter were produced, antiparticles should be showering on our earth: Soon, AMS2 (Alpha Mangetic Spectrometer) will tell us more!

Assuming the universe is a patch work of matter and antimatter  annihilation should come from the boundary A. G. Cohen, A. de Ru Jula, and S. L. Glashow, Astrophys. J. 495: Mpc 20Mpc A in space Our universe is full of matter… Antimatter may be different from matter  CP violation is not enough  CPT can be violated in curved space-time?

 BH ~c 2 /GR 2  ~m/R 3 =h/2  cR 4 (R~h/2  mc)  M Pl ~(hc/2  G) 1/2 ~10 19 GeV/c 2 !!

Merging point of elementary particle physics & cosmology  High energy physics  Atomic Physics alternative scheme Ouroboros  Too high in Energy!

Planck mass: M Pl ~(hc/G) 1/2 ~10 19 GeV (  pl ~  BH : a measure of CPT violation)  Not accessible artificially (by accelerators) forever ~10kHz  Listen to the whisper of nature: mild physics, where atomic and atomic collision physics play the vital role! (m p /M pl )m p c 2 ~ GeV  high precision experiments

1. A brief look back of antiparticle/antimatter 2. CPT symmetry: the fundamental question 3. What to measure, what to prepare 4. Manipulation of H : two schemes from latest results 5. Future 6. Summary Contents

 The simplest antimatter  Hydrogen, the opposite number of antihydrogen, has been studied with extremely high precision, an excellent reference  And anyway, exotic!

|m m -m a |/m|q m +q a |/|q||g m -g a |/|g| e - vs e + <8x10 -9 <4x10 -8 (-0.5±2.1)x p vs p <2x10 -9 (-0.1±2.9)x10 -3 experiments ( Hz )  exp / 1S-2S 2,466,061,413,187,035 (10)4.2x HF 1,420,405, (9)6.3x Spectroscopic precision of hydrogen atom g-factor or magnetic moment of p is the first quantity to determine 1S-2S and hyperfine transitions can be the target

g-factor or magnetic moment of H, HF, looks better to be measured!

|m m -m a |/m|q m +q a |/|q||g m -g a |/|g| e - vs e + <8x10 -9 <4x10 -8 (-0.5±2.1)x p vs p <2x10 -9 (-0.1±2.9)x10 -3 experiments ( Hz )  exp / | th - exp |/ 1S-2S 2,466,061,413,187,035 (10)*4.2x *1x HF 1,420,405, (9)6.3x (3.5±0.9)x10 -6 Spectroscopic precision of hydrogen atom Red letter: theoretical limit for H Unknown physics if at all should show up below this theoretical limit *C.G.Parthey et al., PRL107(2011)203001

experiments  exp / | th - exp |/ 1S-2S 2,466,061,413, (84)* kHz3.4x *1x Spectroscopic precision of hydrogen atom *Th. Udem et al., PRL79(1997)2646 1S-2S 2,466,061,413,187,103 (46)*1.7x *1x *M.Niering et al., PRL84(2000)5496 1S-2S 2,466,061,413,187,035 (10)*4.2x *1x *C.G.Parthey et al., PRL107(2011)203001

Haensch, et al CODATA 2006 Haensch, et al H circular states, De Vries, MIT thesis 2001  - p Lamb shift Pohl, et al J. N. Tan p structure ? CPT: We are more relaxed from theory when H/ H or  - p  + p are compared! H projects

(1) p + e +  H + h (2) p + e + + nh  H + (n+1)h (3) p + e + + e +  H + e + (4) p + (e + e - )  H + e - (5) p + A  H + e - + A H synthesis

ATRAP H P hys.Rev,Lett89(2002) ATHENA H Nature 419(2002)456  no H trapping mechanism, high Rydberg, high temperature  minimum B config. (-m ・ B), cold p H synthesis  a big step, but archeological…

1. A brief look back of antiparticle/antimatter 2. CPT symmetry: the fundamental question 3. What to measure, what to prepare 4. Manipulation of H : two schemes from latest results 5. Future 6. Summary Contents

Necessary temperature of H H beam H free fall H trap

Usual neutral atom trap  Quadrupole trap (Ioffe trap)  Charged particles unstable  higher multipole for uniform field near the axis ALPHA: Octupole coil

E.P van der Werf, et al. J.Phys.Conf.Ser257(2010)012004

Andresen et al., Nature 468 (2010) 673, and Fujiwara et al, Nature Phys. 7(2011)558. ~200 H trapped as long as 2000s! 1. Trap p and e + under uniform B field 2. Energize octupole and mirror fields 3. Mix them for 1 s 4. Remove all p and e + 5. de-energize the magnetic bottle (octupole and mirror coils) After 0.17s As long as 2000s

 ~14GHz/T~60  eV/T~0.7K/T Cusp trap scheme: H beam

Stable trapping of p and e + LFS states focusing HFS states defocusing Minimum B configuration

z axis (mm) Intensity enhancementHigh spin polarization Y. Nagata et al. Cusp trap scheme: H beam

 independent of r  Rigid Rotation! Manipulation of charged particles Higher , higher rotation  drive rotation, higher  !

Manipulation of charged particles

Kuroda et al., PRL100(2008) Manipulation of charged particles p compression with and without electrons

F~3.2x10 8 n -4 (V/m) Cusp trap scheme: H beam

Enomoto et al., Phys. Rev. Lett. 105 (2010) Successful synthesis of H in the cusp trap  Access to H beam for MW spectroscopy for the first time! Cusp trap scheme: H beam

Enomoto et al., Phys. Rev. Lett. 105 (2010) x10 5 p s, 3x10 6 e + s  6x10 3 H s n ~ Reaction efficiency: 2-7% Cusp trap scheme: H beam

1S-2S in a 1T trap:  ~10 6 Hz  ~ , Hyperfine:  ~10 3 Hz  ~ 10 -6, Haensch and Zimmermann, Hyperfine Int. 76(93)47. experiments ( Hz )  exp / | th - exp |/ 1S-2S 2,466,061,413,187,035 (10)4.2x x HF 1,420,405, (9)6.3x (3.5±0.9)x10 -6 : Achievable precision for H Red letter: theoretical limit for H

1. A brief look back of antiparticle/antimatter 2. CPT symmetry: the fundamental question 3. What to measure, what to prepare 4. Manipulation of H : two schemes from latest results 5. Future 6. Summary Contents

10 7 p s/100s, H experiments from 2011 & beyond With these schemes, experiments start to get real physics results from 2011: Hyperfine transition 1S-2S transition Near Future: ELENA (Extra Low Energy Antiprotons)

Atomic collision as heavy e-: H. Knudsen, R.W. McCollough, … p He laser and microwave spectroscopy Spin-flip Gravity: weak equivalence principle Probe of nuclear structure H.Knudsen et al., PRL105(2010)213201

Antiproton mass will soon be known with better precision than the proton mass! p He + laser spectroscopy: Antiproton-to-electron mass ratio measured: (23) Protons Antiprotons Hori et al., Nature 475, 484 (2011)

Atomic collision as heavy e-: H. Knudsen, R.W. McCollough, … p He laser and microwave spectroscopy Spin-flip Gravity: weak equivalence principle Probe of nuclear structure S. Ulmer et al., PRL106(2011)253001

H + 2(e + e - )  H + + 2e - (P.Perez) J.Walz, et al., General relativity and gravitation 36(2004)561 H + + Be +  laser cooling  H + + hv  H + e +  recoil energy? Free Fall: P.Perez (Sacley)

Future possibilities: d s p + p  d +  + D.Moehl & K. Killian, H. Pilkuhn, H. Poth (uud + uud  uududd + u d)

Nagamine et al. Future possibilities: Tabletop  + generator for  + p study   p vs  - p is expected to be more sensitive to the CPTV than H vs H

Summary and outlookSummary and outlook Antimatter matters: successful manipulation of H s, i.e., fundamental symmetry will soon be tested employing atomic physics/atomic collision physics ground-state hyperfine transitions 1S-2S transition p /p spin-flip comparison  S. Ulmer Atomic collision matters to synthesize H and H + antimatter( H )-matter(the earth) interaction ELENA provides times more p s, which really matters ( p  + vs p  - ), d ?, antimatter chemistry….

Cusp trap collaborators Y. Enomoto, N. Kuroda, H. Higaki, K. Michishio, S. Ulmer, H. Imao, Y. Nagata, Y. Kanai, H.A.Torii, Y.Matsuda, A. Mohri, Y.Nagashima, K. Fujii, M. Ohtsuda, S. Takaki, S. Sakurai, Y. Yamazaki Brescia group: V. Mascagna, N. Zurlo, M. Keali, L. Venturelli, E.Lodi-Rizzini, SMI group: B. Juhasz, S. Federmann, O. Massiczek, F. Caspers, E. Widmann

Cusp trap collaborators Y. Enomoto, N. Kuroda, H. Higaki, K. Michishio, S. Ulmer, H. Imao, Y. Nagata, Y. Kanai, H.A.Torii, Y.Matsuda, A. Mohri, Y.Nagashima, K. Fujii, M. Ohtsuda, S. Takaki, S. Sakurai, Y. Yamazaki Brescia group: V. Mascagna, N. Zurlo, M. Keali, L. Venturelli, E.Lodi-Rizzini, SMI group: B. Juhasz, S. Federmann, O. Massiczek, F. Caspers, E. Widmann

G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, R. Hydomako, M. J. Jenkins, S. Jonsell, L. V. Jorgensen, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif el Nasr, D. M. Silveira, C. So, J.W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, Y. Yamazaki ALPHA collaborators