Appearance Models for Graphics COMS 6998-3, Lecture 2 BRDFs and Radiometry Many slides courtesy Pat Hanrahan:

Slides:



Advertisements
Similar presentations
The Radiance Equation.
Advertisements

Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Lighting Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung.
Computer Vision Radiometry. Bahadir K. Gunturk2 Radiometry Radiometry is the part of image formation concerned with the relation among the amounts of.
Computer graphics & visualization Global Illumination Effects.
Capturing light Source: A. Efros. Image formation How bright is the image of a scene point?
Computer Graphics (Fall 2008) COMS 4160, Lecture 18: Illumination and Shading 1
The Radiance Equation Mel Slater. Outline Introduction Light Simplifying Assumptions Radiance Reflectance The Radiance Equation Traditional Rendering.
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry Many slides courtesy Pat Hanrahan.
CPSC 641 Computer Graphics: Radiometry and Illumination Jinxiang Chai Many slides from Pat Haranhan.
16421: Vision Sensors Lecture 6: Radiometry and Radiometric Calibration Instructor: S. Narasimhan Wean 5312, T-R 1:30pm – 2:50pm.
Basic Principles of Surface Reflectance
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Review of EMR & Radiative Processes Electromagnetic Radiation - remote.
RADIOSITY Submitted by CASULA, BABUPRIYANK. N. Computer Graphics Computer Graphics Application Image Synthesis Animation Hardware & Architecture.
Radiometry. Outline What is Radiometry? Quantities Radiant energy, flux density Irradiance, Radiance Spherical coordinates, foreshortening Modeling surface.
Physically Based Illumination Models
Radiometric Concepts Remote Sensing ERAU Dr. Darrel Smith September 30, 2008 Remote Sensing ERAU Dr. Darrel Smith September 30, 2008.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Material Representation K. H. Ko School of Mechatronics Gwangju Institute.
Graphics Graphics Korea University cgvr.korea.ac.kr Illumination Model 고려대학교 컴퓨터 그래픽스 연구실.
Advanced Computer Graphics (Spring 2013) CS 283, Lecture 8: Illumination and Reflection Many slides courtesy.
Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth Radiometry Questions: –how “bright” will surfaces be? –what is “brightness”?
Light and Matter For Computer Graphics Comp 770 Lecture Spring 2009.
Representations of Visual Appearance COMS 6160 [Fall 2006], Lecture 2 Ravi Ramamoorthi
Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2
3-D Computer Vision CSc83029 / Ioannis Stamos 3-D Computer Vision CSc Radiometry and Reflectance.
Stefano Soatto (c) UCLA Vision Lab 1 Homogeneous representation Points Vectors Transformation representation.
Radiometry, lights and surfaces
© 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel.
Computer Graphics (Spring 2008) COMS 4160, Lecture 15: Illumination and Shading
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 10: Global Illumination Ravi Ramamoorthi Some images courtesy.
Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2
Introduction to Computer Vision CS / ECE 181B Tues, May 18, 2004 Ack: Matthew Turk (slides)
Basic Principles of Surface Reflectance
Rendering General BSDFs and BSSDFs Randy Rauwendaal.
Basic Principles of Surface Reflectance Lecture #3 Thanks to Shree Nayar, Ravi Ramamoorthi, Pat Hanrahan.
Computer Graphics (Fall 2004) COMS 4160, Lecture 16: Illumination and Shading 2 Lecture includes number of slides from.
1 Dr. Scott Schaefer Radiosity. 2/38 Radiosity 3/38 Radiosity Physically based model for light interaction View independent lighting Accounts for indirect.
Illumination and Direct Reflection Kurt Akeley CS248 Lecture 12 1 November 2007
Basic Principles of Imaging and Photometry Lecture #2 Thanks to Shree Nayar, Ravi Ramamoorthi, Pat Hanrahan.
CS348B Lecture 4Pat Hanrahan, 2005 Light Visible electromagnetic radiation Power spectrum Polarization Photon (quantum effects) Wave (interference, diffraction)
EECS 274 Computer Vision Light and Shading. Radiometry – measuring light Relationship between light source, surface geometry, surface properties, and.
Reflectance Map: Photometric Stereo and Shape from Shading
MIT EECS 6.837, Durand and Cutler Local Illumination.
01/21/05© 2005 University of Wisconsin Last Time Course introduction A simple physically-based rendering example.
Capturing light Source: A. Efros.
© Lastra/Machiraju/Möller Fundametals of Rendering - Radiometry / Photometry CIS 782 Advanced Computer Graphics Raghu Machiraju.
Towards a Taxonomy of Global Illumination Algorithms Philip Dutré Program of Computer Graphics Cornell University.
111/17/ :21 Graphics II Global Rendering and Radiosity Session 9.
04/30/02(c) 2002 University of Wisconsin Last Time Subdivision techniques for modeling We are now all done with modeling, the standard hardware pipeline.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Material Representation K. H. Ko School of Mechatronics Gwangju Institute.
CSCE 641 Computer Graphics: Reflection Models Jinxiang Chai.
Computer Graphics (Spring 2003) COMS 4160, Lecture 18: Shading 2 Ravi Ramamoorthi Guest Lecturer: Aner Benartzi.
Computer Graphics III – Radiometry
In the name of God Computer Graphics. Last Time Some techniques for modeling Today Global illumination and raytracing.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Material Representation K. H. Ko School of Mechatronics Gwangju Institute.
Radiometry of Image Formation Jitendra Malik. A camera creates an image … The image I(x,y) measures how much light is captured at pixel (x,y) We want.
01/27/03© 2002 University of Wisconsin Last Time Radiometry A lot of confusion about Irradiance and BRDFs –Clarrified (I hope) today Radiance.
Distributed Ray Tracing. Can you get this with ray tracing?
Illumination Study of how different materials reflect light Definition of radiance, the fundamental unit of light transfer in computer graphics How the.
Color and Radiometry Digital Image Synthesis Yung-Yu Chuang 10/25/2007 with slides by Pat Hanrahan and Matt Pharr.
CS552: Computer Graphics Lecture 33: Illumination and Shading.
Radiometry of Image Formation Jitendra Malik. What is in an image? The image is an array of brightness values (three arrays for RGB images)
1 Ch. 4: Radiometry–Measuring Light Preview 。 The intensity of an image reflects the brightness of a scene, which in turn is determined by (a) the amount.
CS580: Radiometry Sung-Eui Yoon ( 윤성의 ) Course URL:
Advanced Computer Graphics
Advanced Computer Graphics
Radiometry (Chapter 4).
© 2002 University of Wisconsin
Terminology.
Digital Image Synthesis Yung-Yu Chuang 10/19/2006
Computer Graphics III – Radiometry
Presentation transcript:

Appearance Models for Graphics COMS , Lecture 2 BRDFs and Radiometry Many slides courtesy Pat Hanrahan:

Radiometry Physical measurement of electromagnetic energy We consider light field –Transport theory –Radiance, Irradiance –Reflection functions: BRDF –Examples, Properties –Simple BRDF models

Transport Theory Flow of stuff. In this case, stuff = photons of light Consider particle flow through small area [CW18] density

Radiance Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray Symbol: L(x,ω) (W/m 2 sr) Flux given by dΦ = L(x,ω) cos θ dω dA

Radiance properties Radiance is constant as it propagates along ray –Derived from conservation of flux –Fundamental in Light Transport.

Radiance properties Sensor response proportional to surface radiance (constant of proportionality is throughput) –Far away surface: See more, but subtends smaller angle –Wall is equally bright across range of viewing distances Consequences –Radiance associated with rays in a ray tracer –All other radiometric quantities derived from radiance

Irradiance, Radiosity Irradiance E is the radiant power per unit area Integrate incoming radiance over hemisphere –Projected solid angle (cos θ d ω) –Uniform illumination: Irradiance = π [CW 24,25] –Units: W/m 2 Radiosity –Power per unit area leaving surface (like irradiance)

BRDF Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW pp 28,29] –Bidirectional Reflection Distribution Function –(4 Vars) Reflectance Equation [CW pp 30]

Mirror

Lambertian

Reflectance/Energy Conservation

Retroreflection

Brdf Viewer plots Diffuse bv written by Szymon Rusinkiewicz Torrance-Sparrow Anisotropic

Representations

Reparameterizations