Presentation is loading. Please wait.

Presentation is loading. Please wait.

© 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel.

Similar presentations


Presentation on theme: "© 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel."— Presentation transcript:

1 © 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel brightness and scene reflectance ?

2 © 2002 by Davi GeigerComputer Vision January 2002 L1.2 Image Formation R solid angle subtended by a small patch of area A. AA L - radiance is the amount of light radiated from a surface per solid angle (power per unit area per unit solid angle emitted from a surface. ) E - irradiance is the amount of light falling in a surface (power per unit area incident in a surface. )

3 © 2002 by Davi GeigerComputer Vision January 2002 L1.3 AA II z f Surface Radiance and Image Irradiance Same solid angle Pinhole Camera Model

4 © 2002 by Davi GeigerComputer Vision January 2002 L1.4 AA II z f d Surface Radiance and Image Irradiance Solid angle subtended by the lens, as seen by the patch  A Power from patch  A through the lens Thus, we conclude

5 © 2002 by Davi GeigerComputer Vision January 2002 L1.5 Conclusions The irradiance at the image pixel is converted into the brightness of the pixel Image Irradiance is proportional to Scene Radiance Scene distance, z, does not affect/reduce image brightness (the model is too simplified, since in practice it does.) The angle of the scene patch with respect to the view (  reduces the brightness by the. In practice the effect is even stronger.

6 © 2002 by Davi GeigerComputer Vision January 2002 L1.6 The Bidirectional Reflectance Distribution Function (BRDF) BRDF - How bright a surface appears when viewed from one direction while light falls on it from another. Usually f depends only on,  true for matte surfaces and specularly reflecting surfaces.

7 © 2002 by Davi GeigerComputer Vision January 2002 L1.7 Extended Light Sources and BRDF AA Light source radiance arriving through solid angle  Power arriving at patch  A from  thus the irradiance arriving at patch  A is The radiance of a patch  A at direction is thus, given by Foreshortening

8 © 2002 by Davi GeigerComputer Vision January 2002 L1.8 Special Cases of BRDF 1.Lambertian Surfaces (matte)- appears equally bright from all viewing directions and reflects all incident light, absorbing none, i.e. the BRDF is constant and. What constant f ? Thus, the total “reflected power” from patch  A becomes Using that we finally obtain since Foreshortening and for Lambertian surfaces

9 © 2002 by Davi GeigerComputer Vision January 2002 L1.9 Special Cases of BRDF 1.S 2.Specular Surfaces (mirrors) – reflects all light arriving from the direction into the direction. The BRDF is in this case proportional to the product of two impulses, and.What is the factor of proportionality ? we finally obtain and for specular surfaces

10 © 2002 by Davi GeigerComputer Vision January 2002 L1.10 Lambertian Surface Brightness How bright will a Lambertian surface be when it is illuminated by a point source of radiance E? and by a “sky” of uniform radiance E? For a point source the irradiance at the surface is and the radiance must then be Familiar cosine or “Lambert’s law” of reflection from matte surfaces (surfaces covered with finely powdered transparent materials such as barium sulfate or magnesium carbonate), and can approximate paper, snow and matte paint. Finally, for a “sky” of uniform radiance E we obtain


Download ppt "© 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel."

Similar presentations


Ads by Google