Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.

Slides:



Advertisements
Similar presentations
Protocol layers and Wireshark Rahul Hiran TDTS11:Computer Networks and Internet Protocols 1 Note: T he slides are adapted and modified based on slides.
Advertisements

Dr. Philip Cannata 1 Computer Networking. Dr. Philip Cannata 2.
1 TCP/IP Network and OSI Model. 2 What is a Protocol? n Allows entities (i.e. application programs) from different systems to communicate n Shared conventions.
Summer Workshop on Cyber Security Computer Networks Security (Part 1) Dr. Hamed Mohsenian-Rad University of California at Riverside and Texas Tech University.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CMPT 771/471: Internet Architecture & Protocols
Introduction1-1 Chapter 1: Introduction Our goal:  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive.
Introduction1-1 Chapter 1: Introduction  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive m.
EEC-484/584 Computer Networks Lecture 3 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 School of Computing Science Simon Fraser University CMPT 771/471: Internet Architecture & Protocols Introduction Instructor: Dr. Mohamed Hefeeda.
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
Lecture 3 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Networking Overview February 2, /2/2004 Assignments Due – Homework 0 Due – Reading and Warmup questions Work on Homework 1.
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
1-1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet.
What’s the Internet: “nuts and bolts” view
Introduction 1 Lecture 3 Networking Concepts slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Computer Networking Introduction, Part II.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
1: Introduction1 Packet switching versus circuit switching r Great for bursty data m resource sharing m no call setup r Excessive congestion: packet delay.
Overview-Part2.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 5 OVERVIEW FOR NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Throughput: Internet scenario
Introduction Protocol “layers” Networks are complex, with many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware,
1 Week 2 Lecture 1 Layers (basics) Dr. Fei Hu. Review last lecture 2.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
CS 381 Introduction to computer networks Chapter 1 - Lecture 4 2/10/2015.
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware, software Question:
ECE 4400:427/527 - Computer Networks Spring 2015 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 3: Network Architectures Dr. Nghi.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Introduction to Computer Networks
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
TCP/IP Network.
Lecture 1: Overview of Internet Architecture Communication Networks ELEN E6761 Instructor: Javad Ghaderi Lecture Slides adapted from “Computer Networking:
1 Computer Networks & The Internet Lecture 4 Imran Ahmed University of Management & Technology.
Internet History CS 4244: Internet Programming Dr. Eli Tilevich.
1: Introduction1 Introduction 3. 1: Introduction2 Delay in packet-switched networks packets experience delay on end-to-end path r four sources of delay.
1 ECE453 - Introduction to Computer Networks Lecture 1: Introduction.
Reference model. Goal: 2 message exchange between application processes.
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
“Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
Introduction and Overview of Network and Telecommunications.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
NWEN 243 Networked Applications Lecture 12: Layer 4 – Transport NWEN 243 © , Kris Bubendorfer.
Introduction and Overview of Network and Telecommunications (contd.)
Computer Networks Dr. Adil Yousif CS Lecture 1.
Introduction and Overview of Network and Telecommunications
Introduction to Networks
Part 0: Networking Review
Administrative Things
Network Introduction.
OSI Protocol Stack Given the post man exemple.
Introduction and Overview of Network and Telecommunications (contd.)
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
ECE 4400:427/527 - Computer Networks Spring 2017
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Presentation transcript:

Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W. Ross, Addison- Wesley, ISBN:

Internet structure: network of networks  roughly hierarchical  at center: “tier-1” ISPs (e.g., UUNet, BBN/Genuity, Sprint, AT&T), national/international coverage m treat each other as equals Tier 1 ISP Tier-1 providers interconnect (peer) privately

Tier-1 ISP: e.g., Sprint Sprint US backbone network

Internet structure: network of networks  “Tier-2” ISPs: smaller (often regional) ISPs m Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs Tier 1 ISP NAP Tier-2 ISP Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet  tier-2 ISP is customer of tier-1 provider Tier-2 ISPs also peer privately with each other, interconnect at NAP

Tier-2 ISP: e.g., Abilene (Internet2)

Internet structure: network of networks  “Tier-3” ISPs and local ISPs m last hop (“access”) network (closest to end systems) Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP Local and tier- 3 ISPs are customers of higher tier ISPs connecting them to rest of Internet

Internet structure: network of networks  a packet passes through many networks! Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP

How do loss and delay occur? packets queue in router buffers  packet arrival rate to link exceeds output link capacity  packets queue, wait for turn A B packet being transmitted (delay) packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers

Four sources of packet delay  1. nodal processing: m determine output link A B propagation transmission nodal processing queueing  2. queueing m time waiting at output link for transmission m depends on congestion level of router

Delay in packet-switched networks 3. Transmission delay:  time to send bits into link = L/R 4. Propagation delay:  time to travel down link A B propagation transmission nodal processing queueing

“Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i: m sends three packets that will reach router i on path towards destination m router i will return packets to sender m sender times interval between transmission and reply. 3 probes

Packet loss  queue (aka buffer) preceding link in buffer has finite capacity  when packet arrives to full queue, packet is dropped (aka lost)  lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

Protocol “Layers” Networks are complex!  many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware, software Question: Is there any hope of organizing structure of network? Or at least our discussion of networks?

Organization of air travel  a series of steps ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing

Organization of air travel : a different view Layers: each layer implements a service m via its own internal-layer actions m relying on services provided by layer below ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing

Layered air travel: services Counter-to-counter delivery of person+bags baggage-claim-to-baggage-claim delivery people transfer: loading gate to arrival gate runway-to-runway delivery of plane airplane routing from source to destination

Distributed implementation of layer functionality ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing Departing airport arriving airport intermediate air traffic sites airplane routing

Why layering? Dealing with complex systems:  explicit structure allows identification, relationship of complex system’s pieces  modularization eases maintenance, updating of system

Internet protocol stack  application: supporting network applications m HTTP,FTP, SMTP  transport: host-host data transfer m TCP, UDP  network: routing of datagrams from source to destination m IP, routing protocols  link: data transfer between neighboring network elements m PPP, Ethernet  physical: bits “on the wire” application transport network link physical

Layering: logical communication application transport network link physical application transport network link physical application transport network link physical application transport network link physical network link physical

Layering: logical communication application transport network link physical application transport network link physical application transport network link physical application transport network link physical network link physical data E.g.: transport  take data from app  add addressing, and other info  send packet to peer  wait for peer to respond  analogy: post office data transport ack

Layering: physical communication application transport network link physical application transport network link physical application transport network link physical application transport network link physical network link physical data

Protocol layering and data Each layer takes data from above  adds header information to create new data unit  passes new data unit to layer below application transport network link physical application transport network link physical source destination M M M M H t H t H n H t H n H l M M M M H t H t H n H t H n H l message segment datagram frame

Internet History  1983: deployment of TCP/IP  1982: SMTP protocol defined  1983: DNS defined for name-to-IP- address translation  1985: FTP protocol defined  1988: TCP congestion control  new national networks: Csnet, BITnet, NSFnet, Minitel  100,000 hosts connected to confederation of networks : new protocols, a proliferation of networks

Internet History  early 1990s: Web m hypertext m HTML, HTTP: Berners- Lee m 1994: Mosaic, later Netscape m late 1990’s: commercialization of the Web Late 1990’s – 2000’s:  more killer apps: instant messaging, peer2peer file sharing (e.g., Naptser)  network security to forefront  est. 50 million host, 100 million+ users  backbone links running at Gbps 1990, 2000’s: commercialization, the Web, new apps