L6 - Stellar Evolution II: August-September, 2004 1 L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
Proto-Planetary Disk and Planetary Formation
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Stockholm Observatory, Sweden
Accretion Processes in Star Formation Lee Hartmann Cambridge Astrophysics Series, 32 Cambridge University Press (also from Nuria Calvet talks (2004) (continued)
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
The Birth of Stars Chapter Twenty. Guiding Questions 1.Why do astronomers think that stars evolve? 2.What kind of matter exists in the spaces between.
The Birth of Stars: Nebulae
Proto-Brown Dwarf Disks as Products of Protostellar Disk Encounters Sijing Shen, James Wadsley (McMaster) The Western Disk Workshop May 19, 2006.
Processes in Protoplanetary Disks Phil Armitage Colorado.
The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna.
L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &
The Birth of Solar Systems A solar system The disk condenses and dissipates Collapse of and interstellar cloud Formation of a protostar and disk.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
The Birthplace of Stars The space between the stars is not completely empty. Thin clouds of hydrogen and helium, seeded with the “dust” from dying stars,
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Pawel Artymowicz Alexis Brandeker Malcolm Fridlund.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
The formation of stars and planets Day 3, Topic 2: Viscous accretion disks Continued... Lecture by: C.P. Dullemond.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Star Formation Astronomy 315 Professor Lee Carkner Lecture 12.
Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Most meteorites formed in the earliest moments of solar system history Early solar system consisted of a planetary nebula-- dust and gas surrounding protostar.
Processes in Protoplanetary Disks
Circumstellar disks - a primer
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Unit 5: Sun and Star formation part 2. The Life Cycle of Stars Dense, dark clouds, possibly forming stars in the future Young stars, still in their birth.
Dispersal of protoplanetary disks by central wind stripping Isamu Matsuyama University of California Berkeley David Hollenbach SETI Institute Doug Johnstone.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A Study of HCO + and CS in Planetary Nebulae Jessica L. Edwards Lucy M. Ziurys Nick J. Woolf The University of Arizona Departments of Chemistry and Astronomy.
AS 4002 Star Formation & Plasma Astrophysics The ‘proplyds’ of Orion Many protostars are surrounded by opaque, dusty discs at ages of a few Myr. Our solar.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et.
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
Walsh, Millar & Nomura, ApJL, 766, L23 (2013)
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
The Interstellar Medium (ISM)
A cloud of gas falling towards the central black hole in the Milky Way. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona.
Young planetary systems
Pre-Main-Sequence of A stars
Molecules: Probes of the Interstellar Medium
The Birth of Stars.
Some considerations on disk models
Ge/Ay133 SED studies of disk “lifetimes” &
-Orbital Motions and Mass Determination
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Recent reviews include: Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows Zuckerman, ARAA 2001, 39: 549 Zuckerman & Song (?), ARAA 2004, in press

L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks and Outflows

L6 - Stellar Evolution II: August-September, Flattened structures - Disks Inevitable consequence of star formation Rotation Magnetic Fields

L6 - Stellar Evolution II: August-September, Flattened structures - Disks Inevitable consequence of star formation Rotation P.S. Laplace 1796, 1799 Exposition du systeme du monde Mechanique celeste I. Kant 1755 Allgemeine Naturgeschichte und Theorie des Himmels Planetary System Formation...another lecture – another time...

L6 - Stellar Evolution II: August-September, Mass Loss - Outflows Inevitable consequence of star formation Angular Momentum Loss - Redistribution The race between mass accretion & mass loss processses see review article

L6 - Stellar Evolution II: August-September, Lynden-Bell & Pringle 1974, MNRAS 168, 603: Keplerian Disk Differential Rotation + Viscosity Mass Transport Inwards Angular Momentum Transport Outwards See also Gösta Gahm’s lecture

L6 - Stellar Evolution II: August-September, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick  -disk blackbody radiation and thin disk approximation When / Where valid ?

L6 - Stellar Evolution II: August-September, Example: Lin & Papaloizou opacities (1985 PP II) Icy grains H - Molecules bound-free free-free (Cox-Stuart-Alexander)

L6 - Stellar Evolution II: August-September, Beckwith et al. 2000, PP IV Grain Opacities

L6 - Stellar Evolution II: August-September, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick a-disk

L6 - Stellar Evolution II: August-September, observed SEDs of T Tauri Stars & `mean model´ of star+disk D´Alessio et al HABE Disk Structure: Dullemond & Dominik 2004 includes vertical Temperature distribution

L6 - Stellar Evolution II: August-September, Gas Disks – Structure Models Steady Disks around Single Stars Boundary Conditions R in : boundary layer, magnetosphere? R out : ?, interstellar turbulence? Viscosity MHD/rotation (Hawley & Balbus 1995) Opacity , T, …, XYZ,...,  , ...,  ...) ModelsAdams & Shu 1986 (flat) [examples] Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998, Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D) Wolf 2003 (3D)

L6 - Stellar Evolution II: August-September, Observations of Keplerian Disks JE Keeler 1895 ApJ 1: 416 The Rings of Saturn spectrum image Courtesy Brandeker, Liseau & Ilyn 2002

L6 - Stellar Evolution II: August-September, Categories of Disks T Tauri Disks: around young stars ( Myr) of half a solar mass ( Msun) at 150 pc distance ( pc) in and/or near molecular clouds Accretion Disks Debris Disks: around young ms-stars ( Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance ( pc) in the general field Vega-excess stellar disks gas rich gas poor

L6 - Stellar Evolution II: August-September, Frequency of Disks High Rate of occurence around young stars NGC % Trapezium cluster 80% IC % Haisch et al and around BDs in Trapezium cluster 65% Muench et al see also G. Gahm’s lecture

L6 - Stellar Evolution II: August-September, Gas Disks - Sizes Size scale (AU)Tracer (mode)*Reference 20000CS (1- 0) (S)Kaifu et al CO (1- 0) (S)Fridlund et al C 18 O (1- 0) (I)Sargent et al < mm (I)Woody et al mm, cm (I)Keene & Masson mm (I)Lay et al H 13 CO + (1- 0) (S)Mizuno et al mm (S)Ladd et al C 18, 17 O (2- 1) (S)Fuller et al CO (1- 0) (I)Ohashi et al H 13 CO + (1- 0) (I)Saito et al H 12, 13 CO + (1- 0) (S, I)Hogerheijde et al.1997, C 18 O + (1- 0) (I)Momose et al Fridlund et al for One Object Size depends on frequency/mode of observation * S=single dish, I=Interferometer

L6 - Stellar Evolution II: August-September, Gas Disks - Sizes T Tauri/HABE disks AUDust: mm-continuum interferometry AUDust: scattered stellar light 300 AUGas: CO lines (evidence for Kepler rotation) Silhouettte disks (``proplyds´´) up to 1000 AUDust: scattered stellar light generally

L6 - Stellar Evolution II: August-September, Gas Disks - Masses H 2 Gas Directly CO and Dust

L6 - Stellar Evolution II: August-September, Gas Disks - Masses Lower limit: to 1 M Sun (based on mm / submm continuum) How good are these numbers ? Do we understand disks ? ? Why ? dust gas +dust Solar Minimum Mass Nebula = M Sun

L6 - Stellar Evolution II: August-September, Gas Disks - Make up gas disks consist of gas and dust what components? what proportions?

L6 - Stellar Evolution II: August-September, T Tauri Disks - Make up van Zadelhoff CO (1)* HCO + (5) HCN (5) CO (200) HCO + (200) HCN (200 ) LkCa 15TW Hya * (N) = depletion factor

L6 - Stellar Evolution II: August-September, T Tauri Disks - Chemistry Molecular abundances (rel. H 2 ) Species LkCa 15TW Hya CO3.4 ( - 7)5.7 ( - 8) HCO (-12)2.2 (-11) H 13 CO + < 2.6(-12)3.6 (-13) DCO + ….7.8 (-13) CN2.4 (-10)1.2 (-10) HCN3.1 (-11)1.6 (-11) H 13 CN….< 8.4(-13) HNC….< 2.6(-12) DCN….< 7.1(-14) CS8.5 (-11)…. H 2 CO4.1 (-11)< 7.1(-13) CH 3 OH< 3.7(-10)< 1.9(-11) N 2 H + < 2.3(-11)< 1.8(-11) H 2 D + < 1.5(-11)< 7.8(-12) Thi 2002

L6 - Stellar Evolution II: August-September, Gas Disks - Evolution Time scales (viscous accretion disk) t dyn ~  t therm ~  (H/R) 2 t visc t dyn ~ 1/  Kepler  ~ H/R << 1 if T ~ R -1/2, t visc ~ R t visc ~ 10 5 yr (  /0.01) -1 (R/10 AU)

L6 - Stellar Evolution II: August-September, Gas Disks - Evolution Disk dispersal and disk lifetimes Physical Mechanisms Hollenbach et al PPIV SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external star evap c = photoevaporation central star All for Trapezium conditions

L6 - Stellar Evolution II: August-September, Gas (T Tauri) Disks - Evolution Disk dispersal and disk lifetimes Mass accretion evolution Calvet et al PPIV Average Error Bar

L6 - Stellar Evolution II: August-September, Gas Disks to Debris Disks – Evolution ? See also lecture by G. Gahm f dust =  L IR /L vs stellar age (F)IR - excess Stellar luminosity (bolometric) How ?

L6 - Stellar Evolution II: August-September, Gas Disks to Debris Disks – Evolution ? Spangler et al Clusters Individual stars (= 1 zodi)

L6 - Stellar Evolution II: August-September, Debris Disks - Properties debris (collision products) or particulate (gas free) percentage of Main Sequence stars (15%?) (observationally) biased towards Spectral Type A for (detectable) ages <400 Myr Habing et al. 1999, 2001 disk sizes 100 to 2000 AU disk masses >1 to 100 M Moon (small grains) Pre-IRAS Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94 Vega Blackwell et al. 1983

L6 - Stellar Evolution II: August-September,

L6 - Stellar Evolution II: August-September, How much Gas in Dusty Debris Disks ? Disk evolution hypothesis: gas rich to gas poor Census of material (m gas /m dust ): planet formation planet formation: enough gas for GPs ? planet formation: time scales ? planet formation: seeds of Life ? See review

L6 - Stellar Evolution II: August-September, L 6: conclusions circumstellar disks are a consequence of star formation disks and bipolar outflows/jets are connected disks form potentially planetray systems L 6: open questions what are the physics of disks and their outflows ? how do disks evolve ? what fraction forms planetary systems ? when and how ?