RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
Spatial and temporal relationships between UV continuum and hard x-ray emissions in solar flares Aaron J. Coyner and David Alexander Rice University June.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
TRACE Downflows and Energy Release Ayumi ASAI Kwasan Observatory, Kyoto University Magnetic Reconnection and the Dynamic Sun 9 September, Andrews.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Imaging with subcollimator 1. Dec 6, 2006 white light flare Hinode/SOT image during the main HXR peak! SOT resolution.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf & J. Wolfson (LMSAL), L. Fletcher & J. Khan (Glasgow)
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Statistical Properties of Hot Thermal Plasmas in M/X Flares Using RHESSI Fe & Fe/Ni Line * and Continuum Observations Amir Caspi †1,2, Sam Krucker 2, Robert.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Observations of the failed eruption of the magnetic flux rope – a direct application of the quadrupolar model for a solar flare Tomasz Mrozek Astronomical.
Nonlinear Force Free Field Models for AR J.McTiernan, H.Hudson (SSL/UCB) T.Metcalf (LMSAL)
The Non-Flare Temperature and Emission Measure Observed by RHESSI and SXI J.McTiernan (SSL/UCB) J.Klimchuk (NRL) Fall 2003 AGU Meeting.
WG1: Techniques and Applications Wed AM: imaging comparison Wed PM1: source positions Wed PM2: source sizes Thu AM1: new algorithms Thu AM2: source fluxes.
RHESSI Background Spectra Vs Time. Qlook_bck Spectra have 491 energy channels, 1/3 keV resolution from 3 to 100 keV, 1 keV from 100 to 300 keV. Accumulated.
ISSI Workshop, October 3-6, Yohkoh statistical studies Michał Tomczak Astronomical Institute, University of Wrocław, Poland.
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf, J. Wolfson (LMSAL), L. Fletcher & J.I. Khan (Glasgow)
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Energy-height relation for hard X-ray footpoint sources observed by RHESSI. TOMASZ MROZEK ASTRONOMICAL INSTITUTE, WROCŁAW UNIVERSITY.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
RHESSI Microflares Steven Christe 1,2, Säm Krucker 2, Iain Hannah 3, R. P. Lin 1,2 1 Physics Department, University of California at Berkeley 2 Space Sciences.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Magnetic Reconnection in Flares Yokoyama, T. (NAOJ) Reconnection mini-workshop Kwasan obs. Main Title 1.Introduction : Reconnection Model of.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
1 Wei Liu, Tongjiang Wang, Brian Dennis, & Gordon Holman NASA Goddard Space Flight Center Evidence of Magnetic Reconnection & Existence of Current Sheet.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Dong Li Purple Mountain Observatory, CAS
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
Two Years of NoRH and RHESSI Observations: What Have We Learned
RHESSI Spectral Analysis of the 1N/M1.9 flare of 20 October 2003
TRACE Downflows and Energy Release
TOMASZ MROZEK ASTRONOMICAL INSTITUTE, WROCŁAW UNIVERSITY
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Downflow as a Reconnection Outflow
Presentation transcript:

RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University of Wrocław

Questions How long? Spatial scale Where? After the maximum of the flare; not during the impulsive phase

YOHKOH results - SXR Kołomański, S., 2007: >6h duration >3 orbits of YOHKOH starting from the maximum of the flare

YOHKOH results - SXR Different sources observed at the same time suggest that the energy reales takes place in different locations Typical sizes of the SXR sources are x10 4 km

YOHKOH results - HXR HXR emission in the L channel (14-23 keV) was observed up to 40 minutes after the maximum of the flare

YOHKOH results - HXR Rise phase – coronal and footpoint sources Decay phase - HXR source observed 40 minutes after the maximum of the flare. It is 10 times longer than characteristic cooling time of such source – indirect proof for the energy release long after the maximum of the flare.

RHESSI & LDEs - motivation Better spatial resolution – more detailed investigation of sources Better sensitivity - weak, coronal sources could be detected long after the maximum of the flare Better energy resolution – more detailed analysis of LDEs spectra, searching for different types of sources (very hot thermal, non-thermal)

RHESSI & LDE Feb – Feb ~ 160 LDE flares found with the use of GOES lightcurves ~ 50 which last longer than 3 hours in RHESSI observations 30 July 2005 X1.3 >10 h

Method 2-minutes intervals: -with attenuators out - outside the radiation belts - far from the SAA Thus, for 10 hours decay we have only three time intervals for imaging and spectroscopy (for this flare, in other cases we can have up to 9-10 intervals)

Method Images: Time interval: 11:38 – 11:40 Grids: 3,4,5,6,8,9 Pixel size: 1” 4-6 keV10-12 keV15-23 keV

Method The signal in the keV interval is observed (11:40 UT – 6 hours after the maximum) - why we can’t obtain images?

Method Because of the size of sources? grid number time

Method We have to choose detectors in more flexible way – sources are large, but the result is realiable

30 July images Comparison with EIT 195 Å RHESSI images reconstructed with the use of PIXON method Red contours – 6-7 keV Blue contours – keV 6 hours after the maximum of the flare

30 July spectra double thermal

30 July spectra thermal + thin target

30 July spectra thermal + thick target

30 July spectra thermal + broken power-law

30 July 2005 How long? HXR emission in keV is observed 6 hours after the maximum - we need an energy release existing for such long time To balance the thermal and conductive losses we need a heating of the order of 1 erg s -1 cm -3 (10 28 erg s -1 from the whole volume) Spatial scale: the order of 10 4 km Where?

7 Nov 2003 B4.7 S29W degrees behind the limb

Extremely weak

Conclusions LDEs are observed by RHESSI however the analysis is very complicated due to attenuators, radiation belts, SAA and other HXR sources (above 15 keV) are visible even 6 hours after the maximum of the flare. Long-lasting HXR sources are located above structures seen in different wavelengths and have large sizes. For long-lasting HXR sources located far above the solar limb we do not detect significant non-thermal or hot components.