Introduction to Transport Layer. Transport Layer: Motivation A B R1 R2 r Recall that NL is responsible for forwarding a packet from one HOST to another.

Slides:



Advertisements
Similar presentations
Transport Layer3-1 Transport Overview and UDP. Transport Layer3-2 Goals r Understand transport services m Multiplexing and Demultiplexing m Reliable data.
Advertisements

Introduction 1-1 Chapter 3 Transport Layer Intro and Multiplexing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
CPSC 441: Intro, UDP1 Transport Layer Instructor: Carey Williamson Office: ICT Class Location:
EEC-484/584 Computer Networks Lecture 12 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Computer Communication Digital Communication in the Modern World Transport Layer Multiplexing, UDP
Chapter 3: Transport Layer
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Lecture 8 Chapter 3 Transport Layer
CPSC 441: Intro, UDP1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP.
3-1 Transport services and protocols r provide logical communication between app processes running on different hosts r transport protocols run in end.
1 Computer Networks Transport Layer Protocols. 2 Application-layer Protocols Application-layer protocols –one “piece” of an app –define messages exchanged.
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Previous Lecture r P2P file sharing r Socket programming with TCP r Socket programming with UDP.
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Review: –What is AS? –What is the routing algorithm in BGP? –How does it work? –Where is “policy” reflected in BGP (policy based routing)? –Give examples.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 12 Omar Meqdadi Department of Computer Science and Software Engineering University.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 04_a Transport Protocols - UDP Instructor: Dr. Li-Chuan Chen Date: 09/22/2003 Based in part upon slides.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network LayerII-1 RSC Part III: Transport Layer 1. Basic Concepts Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
Transport Layer and UDP Tahir Azim Ref:
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
Chapter 3 Transport Layer
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer3-1 Chapter 3 Transport Layer These ppt slides are originally from the Kurose and Ross’s book. But some slides are deleted and added for.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Ram Dantu (compiled from various text books)
1 Transport Layer Lecture 7 Imran Ahmed University of Management & Technology.
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
The Transport Layer application transport network data link physical application transport network data link physical application transport network data.
CS 3830 Day 13 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due Wednesday, Oct 10 Transport Layer 3-2.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer 3-1 Internet Transport Layer Lecture 8 Dr. Najla Al-Nabhan.
Prof. Younghee Lee 1 1 Computer Networks u Lecture 5: Transport services and protocols Prof. Younghee Lee * Some part of this teaching materials are prepared.
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1-1 source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical.
2: Transport Layer 11 Transport Layer 1. 2: Transport Layer 12 Part 2: Transport Layer Chapter goals: r understand principles behind transport layer services:
CSEN 404 Transport Layer I Amr El Mougy Lamia Al Badrawy.
Transport Layer3-1 Transport Layer Never take life seriously. Nobody gets out alive anyway.
Chapter 3 Transport Layer
Introduction to Networks
Chapter 3 Transport Layer
Transport Layer Slides are originally from instructor: Carey Williamson at University of Calgary Very minor modification are made Notes derived from “Computer.
Chapter 3 outline 3.1 Transport-layer services
Transport Protocols Relates to Lab 5. An overview of the transport protocols of the TCP/IP protocol suite. Also, a short discussion of UDP.
06- Transport Layer Transport Layer.
Chapter 3 Transport Layer
CS 1652 Jack Lange University of Pittsburgh
Introduction to Networks
Transport Layer Our goals:
September 19th, 2013 CS1652 Jack Lange University of Pittsburgh
Transport Protocols Relates to Lab 5. An overview of the transport protocols of the TCP/IP protocol suite. Also, a short discussion of UDP.
CSCD 330 Network Programming
Chapter 3 Transport Layer
Transport Protocols Relates to Lab 5. An overview of the transport protocols of the TCP/IP protocol suite. Also, a short discussion of UDP.
Transport Layer Our goals:
Presentation transcript:

Introduction to Transport Layer

Transport Layer: Motivation A B R1 R2 r Recall that NL is responsible for forwarding a packet from one HOST to another HOST r But it is the applications that communicate! m How do you make applications on HOSTs to communicate? r Need a new layer, called the “Transport Layer” m Responsible for providing communication between applications running in different hosts m A Web Browser talking to a Web Server Network Link Physical Network Link Physical Network Link Physical Network Link Physical C Network Link Physical Transport Network Link Physical Transport Network Link Physical Transport Network Link Physical FTP Server Web Server Web Browser FTP Client

Transport services and protocols r provide logical communication between app processes running on different hosts r transport protocols run in end systems m send side: breaks app messages into segments, passes to network layer m rcv side: reassembles segments into messages, passes to app layer r more than one transport protocol available to apps m Internet: UDP, TCP, SCTP application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical logical end-end transport

Transport vs. network layer r network layer: logical communication between hosts r transport layer: logical communication between processes m relies on, enhances, network layer services Household analogy: 12 kids sending letters to 12 kids r processes = kids r app messages = letters in envelopes r hosts = houses r transport protocol = Ann and Bill r network-layer protocol = postal service

Transport Layer Functions r Demultiplexing to upper layer -- Obligatory m Deliver an incoming packet to the correct application r Define Delivery Sematics and Implement them m Reliable vs. unreliable m Unicast vs. multicast m Ordered vs. unordered r Flow control -- Optional m Do not allow sender to overrun receiver’s buffer resources r Congestion control -- Optional m Do not allow the sender to overrun the network capacity

Internet transport-layer protocols r User Datagram Protocol (UDP) m unreliable (“best-effort”), m unordered m unicast or multicast delivery m no flow, no congestion control r Transmission Control Protocol (TCP) m reliable m in-order m unicast m flow & congestion control r Stream Control Transport Protocol (SCTP) (will not cover in class) m RFC 2960 m reliable m optional ordering m unicast m flow & congestion control

Multiplexing Multiplexing/demultiplexing – Why? r Why need demultiplexing? m Assume you are running 3 network applications all using the same transport protocol, e.g., TCP FTP Server, Telnet Client, Web Browser m When a packet arrives at a host, it moves up the protocol stack until it reaches the transport layer, e.g., TCP m Now, the transport layer needs a way to determine which application the packet needs to be delivered. This is the demultiplexing problem. m Recall that all protocol layers perform multiplexing/demultiplexing: e.g., IP needs to determine which transport protocol a given packet needs to be delivered, UDP or TCP? Demultiplexing transport network link physical P2 P1 P3 transport network link physical P2 P1 P3

Demultiplexing: How? r host receives IP datagrams m each datagram has source IP address, destination IP address m each datagram carries 1 transport-layer segment m each segment has source, destination port number (well-known port numbers for specific applications) m Port #s: 16 bits ports are called well-known and are reserved –HTTP uses port 80 –Telnet uses port 23 –RFC 1700 lists the reserved ports source port #dest port # 32 bits application data (message) other header fields TCP/UDP segment format